• Title/Summary/Keyword: medium operating temperature

Search Result 75, Processing Time 0.026 seconds

Fuzzy Based Failure Mode and Effect Analysis (FMEA) of Hydrogen Production Process Using the Thermococcus Onnurineus NA1 (퍼지기반 해양 미생물 이용 수소 제조 공정의 고장유형 및 영향분석)

  • PARK, SUNG HO;AHN, JUNKEON;KIM, SU HYUN;YOO, YOUNG DON;CHANG, DAEJUN;KANG, SUNGKYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.4
    • /
    • pp.307-316
    • /
    • 2018
  • In this study, the failure mode and effect analysis (FMEA) of hydrogen production process by using the Thermococcus onnurineus NA1 was conducted and advanced methodology to compensate the weakness of previous FMEA methodology was applied. To bring out more quantitative and precise FMEA result for bio-hydrogen production process, fuzzy logic and potential loss cost estimated from ASPEN Capital Cost Estimator (ACCE) was introduced. Consequently, risk for releasing the flammable gases via internal leakage of steam tube which to control the operating temperature of main reactor was caution status in FMEA result without applying the fuzzification and ACCE. Moreover, probability of the steam tube plugging caused by solid property like medium was still caution status. As to apply the fuzzy logic and potential loss cost estimated from ACCE, a couple of caution status was unexpectedly upgraded to high dangerous status since the potential loss cost of steam tube for main reactor and decrease in product gases are higher than expected.

A Light Incident Angle Stimulated Memristor Based on Electrochemical Process on the Surface of Metal Oxide

  • Park, Jin-Ju;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.174-174
    • /
    • 2014
  • Memristor devices are one of the most promising candidate approaches to next-generation memory technologies. Memristive switching phenomena usually rely on repeated electrical resistive switching between non-volatile resistance states in an active material under the application of an electrical stimulus, such as a voltage or current. Recent reports have explored the use of variety of external operating parameters, such as the modulation of an applied magnetic field, temperature, or illumination conditions to activate changes in the memristive switching behaviors. Among these possible choices of signal controlling factors of memristor, photon is particularly attractive because photonic signals are not only easier to reach directly over long distances than electrical signal, but they also efficiently manage the interactions between logic devices without any signal interference. Furthermore, due to the inherent wave characteristics of photons, the facile manipulation of the light ray enables incident light angle controlled memristive switching. So that, in the tautological sense, device orienting position with regard to a photon source determines the occurrence of memristive switching as well. To demonstrate this position controlled memory device functionality, we have fabricated a metal-semiconductor-metal memristive switching nanodevice using ZnO nanorods. Superhydrophobicity employed in this memristor gives rise to illumination direction selectivity as an extra controlling parameter which is important feature in emerging. When light irradiates from a point source in water to the surface treated device, refraction of light ray takes place at the water/air interface because of the optical density differences in two media (water/air). When incident light travels through a higher refractive index medium (water; n=1.33) to lower one (air; n=1), a total reflection occurs for incidence angles over the critical value. Thus, when we watch the submerged NW arrays at the view angles over the critical angle, a mirror-like surface is observed due to the presence of air pocket layer. From this processes, the reversible switching characteristics were verified by modulating the light incident angle between the resistor and memristor.

  • PDF

Immobilization of Cyclodextrin Glucanotrasferase on Amberline IRA-900 for Biosynthesis of Transglycosylated Xylitol

  • Kim, Pan-Soo;Shin, Hyun-Dong;Park, Joong-Kon;Lee, Young-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.3
    • /
    • pp.174-180
    • /
    • 2000
  • Cyclodextrin glucanotransferase (CGTasa) from Thermoanaerobacter sp. was adsorbed on the ion exchange resin Amberlite IRA-900. The optimum conditions for the immobilization of the CGTase were pH6.0 and 600 U CGTase/g resin, and the maximum yield of immobilization was around 63% on the basis of amount ratio of the adsorbed enzyme to intial amount in the solution. Immobilixation of CGTase shifted the optimum temperature for the enzyme to peoduce transglycosylated xylitol from 7$0^{\circ}C$ to 9$0^{\circ}C$ and improved the thermal stability of immobilized CGTase, especially after the addition of soluble starch and calcium ions. Transglycosylated xylitol was continuoncly produced using immobilized CGTase in the column type packed bed reactor, and the operating conditions for maximum yield were 10%(w/v) dextrin (13 of the dextrose equivalent) as the glycosyl donor, 10%(w/v) dextrin (13 of the dextrose equivalent) as the glycosyl donor, 10%(w/v) xylitor as the glycosyl acceptor, 20mL/h of medium fiow rate, and 6$0^{\circ}C$. The maximum yield of transglycosylated xylitol and productivity were 25% and 7.82 g.L-1.h-1, respectively. The half-life of the immobilized CGTase in a column type packed bed reactor was longer than 30 days.

  • PDF

Vinegar Production by Acetobacter aceti Cell Immobilized in Calcium Alginate (Calcium Alginate로 고정화된 Acetobacter aceti에 의한 식초생산)

  • 유익제;박기문유연우최춘언
    • KSBB Journal
    • /
    • v.5 no.2
    • /
    • pp.167-173
    • /
    • 1990
  • This study is to investigate for obtaining the operating conditions of continuous vinegar production using fluidized bed reactor by Acetobacter aceti cell immobilized in Ca-alginate gel. The optimum conditions obtaining by batch fermentation using fluidized bed reactor were as follows; The fermentation temperature and aeration rate were 3$0^{\circ}C$ and 1.0VVM and the initial concentration of ethanol and acetic acid in medium were 33g/l and 27g/l respectively. The amount of bead used was 25%(w/v). The overall acetic acid productivities of batch fermentations by free cell and immobilized cell were 0.31g/l-hr and 0.48g/l-hr, respectively, at the final acetic acid concentration of 50g/l. In the continuous vinegar production using fluidized bed reactor by immobilized cell under optimum conditions, it was possible to produce 23g/l acetic acid continuously up to 90 days with maximum acetic acid productivity of 2.76g/l-hr at dilution rate 0.12hr-1.

  • PDF

An Experimental Study on Thermal and Electrical Performance of an Air-type PVT Collector (실험에 의한 공기식 PVT 컬렉터의 열·전기 성능에 관한 연구)

  • Kim, Sang-Myung;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.23-32
    • /
    • 2019
  • PVT (Photovoltaic/thermal) system is technology that combines PV and solar thermal collector to produce and use both solar heat and electricity. PVT has the advantage that the energy production per unit area is higher than any single use of PV or solar thermal energy systems because it can produce and use heat and electricity simultaneously. Air-type PVT collectors use air as the heat transfer medium, and the air flow rate and flow pattern are important factors affecting the performance of the PVT collector. In this study, a new air-type PVT collector with improved thermal performance was designed and manufactured. And then thermal and electrical performance and characteristics of air-type PVT collector were analyzed through experiments. For the thermal performance analysis of the PVT collector, the experiment was conducted under the test conditions of ISO 9806:2017 and the electrical performance was analyzed under the same conditions. As a result, the thermal efficiency increased to 26~45% as the inlet flow rate of PVT collector increased from $60{\sim}200m^3/h$. Also, it was confirmed that the air-type PVT collector prevents the PV surface temperature rise according to the operating conditions.

Pyrolysis Characteristics of CCL(Copper Clad Laminate) Based Paper/Phenolic Resin Composites (종이/페놀수지가 주성분인 동박적층판(Copper Clad Laminate)의 열분해 특성)

  • Song, Jae-Hun;Kim, Seung-Do;Ahn, Hyun-Cheol;Kim, Gyung-Soo;Kim, Sang-Bum;Jung, Jae-Sung;Gong, Sung-Ho;Cho, Young-Gae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1013-1019
    • /
    • 2007
  • Electronic wastes have increased tremendously. However, any reliable treatment methodologies have rarely been established. Electronic wastes have posed serious disposal problem due to their physico-chemical stability. This paper investigated the application possibility of pyrolysis for the purpose of recycling the p-CCL(phenol based Copper Clad Laminate). Thermogravimetric analysis(TGA) was used to investigate the thermal decomposition pattern of p-CCL. We elucidated the characteristics of pyrolysis by-products at operating temperatures of 280, 350 and $600^{\circ}C$. GC/MS and FT-IR were used to characterize the liquid by-products along with general characterization methods such as Ultimate Analysis, Proximate Analysis and Heating Value, whereas general characterization methods were only introduced for the solid by-products. At a heating rate of $5^{\circ}C$/min, TGA curves exhibited three decomposition stages: (1) low-temperature decomposition region$(<280^{\circ}C)$, (2) medium temperature region$(280\sim350^{\circ}C)$ and (3) high-temperature region$(>350^{\circ}C)$. The major compounds of liquid by-products at low- and medium-temperatures were accounted for by water and phenol, whereas branched phenols and furans were major compounds at high-temperatures. As the temperature increases, volatile quantities decreased but the fixed carbon increased. High heating values of solid by-products($7,400\sim7,600$ kcal/kg) would suggest that the solid by-products could be applicable as fuel. In addition, high fixed carbon but low ash content of the solid by-products offered an implication that they are capable of being upgradable for adsorbent after applying appropriate activating process.

Enzymatic Synthesis of Fructose-based Sugar Fatty Acid Ester Using Methyl Fructoside (메틸프룩토시드를 이용한 과당계열 당 지방산 에스테르의 효소적 합성)

  • 허주형;김해성
    • KSBB Journal
    • /
    • v.13 no.6
    • /
    • pp.706-717
    • /
    • 1998
  • Enzymatic synthesis of fructose-based sugar fatty acid esters, such as methyl fructoside oleic acid mono and diester, was investigated using methyl fructoside as a sugar starting material. For the production of methyl fructoside fatty acid monoester by solvent process, 2-methyl 2-propanol was found to be a god reaction medium resulting a higher yield and productivity due to its high sugar solubility. The yield and productivity of methyl fructoside oleic acid monoester were 70% and 12.6g/L-hr, respectively, when molar ratio of methyl fructoside, initial concentration of methyl fructoside, enzyme(Novozym 435) content, and reaction temperature were 3:1, 200g/L, 1%(w/v), and $60^{\circ}C$, respectively. Methyl fructoside oleic acid diester was prepared by lipase-catalyzed diacylation of methyl fructoside and oleic acid in the solvent-free process. Maximum yield of 98% and productivity of 140g/L-hr were achieved when molar ratio(methyl fructoside and oleic acid) of 1:2 enzyme content of 10%(w/v) and reaction temperature of $70^{\circ}C$ were applied for the operating conditions under a reduced pressure of 20∼200 mmHg.

  • PDF

A Study on the Optimal Operating Conditions for an Unreacted Hydrogen Oxidation-Heat Recovery System for the Safety of the Hydrogen Utilization Process (수소 활용공정 안전성 확보를 위한 미반응 수소 산화-열 회수 시스템의 운전 조건 최적화 연구)

  • Younghee Jang;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.307-312
    • /
    • 2023
  • In this study, a catalytic oxidation-heat recovery system was designed that can remove unreacted with a concentration of about 1% to 6% in the exhaust gas of hydrogen fuel cells and recover heat to ensure safety in the hydrogen economy. The safety system was devised by filling hydrogen oxidation catalysts at room temperature that can remove unreacted hydrogen without any energy source, and an exhaust-heat recovery device was integrated to efficiently recover the heat released from the oxidation reaction. Through CFD analysis, variations in pressure and fluid within the system were shown depending on the filling conditions of the hydrogen oxidation system. In addition, it was found that waste heat could be recovered by optimizing the temperature of the exhaust gas, flow rate, and pressure conditions within the heat recovery system and securing hot water above 40 ℃ by utilizing the exhaust gas oxidation heat source above 300 ℃. Through this study, it was possible to confirm the potential of utilizing hydrogen processes, which are applied in small to medium-sized systems such as hydrogen fuel cells, as a safety system by evaluating them at a pilot scale. Additionally, it could be a safety guideline for responding to unexpected hydrogen safety accidents through further pilot-scale studies.

Effect of Floor Space Allowance on Pig Productivity across Stages of Growth: A Field-scale Analysis

  • Lee, Joon H.;Choi, Hong L.;Heo, Yong J.;Chung, Yoon P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.739-746
    • /
    • 2016
  • A total of 152 pig farms were randomly selected from the five provinces in South Korea. During the experiment, the average temperature and relative humidity was $24.7^{\circ}C$ and 74% in summer and $2.4^{\circ}C$ and 53% in winter, respectively. The correlation between floor space allowance (FSA) and productivity index was analyzed, including non-productive sow days (NPD), number of weaners (NOW), survival rate (SR), appearance rate of A-grade pork (ARA), and days at a slaughter weight of 110 kg (d-SW) at different growth stages. The objectives of the present study were i) to determine the effect of FSA on the pig productivity index and ii) to suggest the minimum FSA for pigs based on scientific baseline data. For the pregnant sow, NPD could be decreased if pregnant sows were raised with a medium level (M) of FSA (3.10 to $3.67m^2/head$) while also keeping the pig house clean which improves hygiene, and operating the ventilation system properly. For the farrowing sows, the NOW tended to decrease as the FSA increased. Similarly, a high level of FSA (H) is significantly negative with weaner SR of farrowing sows (p-value = 0.017), indicating this FSA tends to depress SR. Therefore, a FSA of 2.30 to $6.40m^2/head$ (very low) could be appropriate for weaners because a limited space can provide a sense of security and protection from external interruptions. The opposite trend was observed that an increase in floor space (> $1.12m^2/head$ leads to increase the SR of growing pigs. For the fattening pigs, H level of FSA was negatively correlated with SR, but M level of FSA was positively correlated with SR, indicating that SR tended to increase with the FSA of 1.10 to $1.27m^2/head$. In contrast, ARA of male fattening pigs showed opposite results. H level of FSA (1.27 to $1.47m^2/head$) was suggested to increase productivity because ARA was most affected by H level of space allowance with positive correlation ($R^2=0.523$). The relationship between the FSA and d-SW of fattening pigs was hard to identify because of the low $R^2$ value. However, the farms that provided a relatively large floor space (1.27 to $1.54m^2/head$) during the winter period showed d-SW was significantly and negatively affected by FSA.

A Study on the Design of the Free-Piston Stirling Engine/Alternator (자유 피스톤 스털링엔진/발전기의 설계 인자 연구)

  • Park, Seongje;Hong, Yongju;Ko, Junseok;Kim, Hyobong;Yeom, Hankil;In, Sehwan;Kang, Insu;Lee, Cheongsu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.648-655
    • /
    • 2014
  • This paper describes the continuing effort to develope a single acting free-piston Stirling engine/alternator combination for use of the household cogeneration. Free piston Stirling engines(FPSE) use variations of working gas pressure to drive mechanically unconstrained reciprocating elements. Stirling cycle free-piston engines are driven by the Stirling thermodynamic cycle which is characterized by an externally heated device containing working gas that is continuously re-used in a regenerative, reversible cycle. The ideal cycle is described by two isothermal process connected by two constant volume processes. Heat removed during the constant volume cooling process is internally transferred to the constant volume heating process by mutual use of a thermal storage medium called the regenerator. Since the ideal cycle is reversible, the ideal efficiency is that of Carnot. Free-piston Stirling engine is have no crank and rotating parts to generate lateral forces and require lubrication. The FPSE is typically comprised of two oscillating pistons contained in a common cylinder. The temperature difference across the displacer maintains the oscillations, and the FPSE operate at natural frequency of the mass-spring system. The power is generated from a linear alternator. The purpose of this paper is to describe the design process of the single acting free-piston Stirling engine/alternator. Electrical output of the single acting free-piston Stirling engine/alternator is about 0.95 kW.