• Title/Summary/Keyword: medium layer

Search Result 732, Processing Time 0.024 seconds

Seismic Modeling for Inhomogeneous Medium (불균질 매질에서 탄성파 모델링)

  • Kim, Young-Wan;Jang, Seong-Hyung;Yoon, Wang-Jung
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.739-749
    • /
    • 2007
  • The seismic velocity at the formation varies widely with physical properties in the layers. These features on seismic shot gathers are not capable of reproducing normally by numerical modeling of homogeneous medium, so that we need that of random inhomogeneous medium instead. In this study, we conducted Gaussian autocorrelation function (ACF), exponential autocorrelation function and von Karman autocorrelation function for getting inhomogeneous velocity model and applied a simple geological model. According to the results, von Karman autocorrelation function showed short wavelength to the inhomogeneous velocity medium. For numerical modeling for a gas hydrate, we determined a geological model based on field data set gathered in the East sea. The numerical modeling results showed that the von Karman autocorrelation function could properly describe scattering phenomena in the gas hydrate velocity model which contains an inhomogeneous layer. Besides, bottom-simulating-reflectors and scattered waves which appear at seismic shot gather of the field data showed properly in the inhomogeneous numerical modeling.

Effects of Nutrient Solution Application Methods and Rhizospheric Ventilation on Vegetative Growth of Young Moth Orchids without a Potting Medium in a Closed-Type Plant Factory

  • Min, Sang Yoon;Oh, Wook
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.5
    • /
    • pp.545-554
    • /
    • 2020
  • Background and objective: Moth orchids in the vegetative stage are suitable for a multi-layer growing environment in a closed-type plant factory which can be a good alternative that can reduce production costs by reducing cultivation time and energy cost per plant. This study was conducted to find out the optimal rhizospheric environment for different irrigation methods without a potting medium and rhizospheric ventilation for the vegetative growth of young Phalaenopsis hybrid 'Blanc Rouge' (P. KV600 × P. Kang 1) and Phalaenopsis Queen Beer 'Mantefon' in a closed-type plant factory system. Methods: The one-month-old clonal micropropagules with bare roots rapped with a sponges were fixed on the holes of styrofoam plates above growth beds, and were watered using the ebb-and-flow (EBB) and aeroponic (AER) methods with Ichihashi solution (0.5 strength) once a day at 06:00 (P) or 18:00 (S), and both (PS). Rhizospheric ventilation (V) was also applied to change the temperature, relative humidity, and CO2 concentration of the beds. Plants potted into sphagnum moss and watered once a week were used as the control group. Results: After 12 months of treatment, the growth characteristics of the EBB groups were the best among the treatment groups without a medium, but no effect of irrigation timing was observed. V reduced the temperature, relative humidity and CO2 concentration of the beds. Whereas, EBB+V (ebb-and-flow with ventilation) improved plant growth and reduced the occurrence of disorders and withering. Especially, EBB+V showed a similar performance to the control group. Conclusion: The results indicated that the optimal irrigation method without a potting medium for producing middle-aged potted moth orchids was the EBB system with forced rhizospheric ventilation. Therefore, further studies on the optimal ventilation method and moisture control of the crown need to be carried out to develop the irrigation system without a potting medium for vertical farming in closed-type plant factories.

Shape optimization for partial double-layer spherical reticulated shells of pyramidal system

  • Wu, J.;Lu, X.Y.;Li, S.C.;Zhang, D.L.;Xu, Z.H.;Li, L.P.;Xue, Y.G.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.555-581
    • /
    • 2015
  • Triangular pyramid and Quadrangular pyramid elements for partial double-layer spherical reticulated shells of pyramidal system are investigated in the present study. Macro programs for six typical partial double-layer spherical reticulated shells of pyramidal system are compiled by using the ANSYS Parametric Design Language (APDL). Internal force analysis of six spherical reticulated shells is carried out. Distribution regularity of the stress and displacement are studied. A shape optimization program is proposed by adopting the sequence two-stage algorithm (RDQA) in FORTRAN environment based on the characteristics of partial double-layer spherical reticulated shells of pyramidal system and the ideas of discrete variable optimization design. Shape optimization is achieved by considering the objective function of the minimum total steel consumption, global and locality constraints. The shape optimization of six spherical reticulated shells is calculated with the span of 30m~120m and rise to span ratio of 1/7~1/3. The variations of the total steel consumption along with the span and rise to span ratio are discussed with contrast to the results of shape optimization. The optimal combination of main design parameters for six spherical reticulated shells is investigated, i.e., the number of the optimal grids. The results show that: (1) The Kiewitt and Geodesic partial double-layer spherical reticulated shells of triangular pyramidal system should be preferentially adopted in large and medium-span structures. The range of rise to span ratio is from 1/6 to 1/5. (2) The Ribbed and Schwedler partial double-layer spherical reticulated shells of quadrangular pyramidal system should be preferentially adopted in small-span structures. The rise to span ratio should be 1/4. (3) Grids of the six spherical reticulated shells can be optimized after shape optimization and the total steel consumption is optimized to be the least.

Composition Effect of the Outer Layer on the Vesicle Fusion Catalyzed by Phospholipase D

  • Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3509-3513
    • /
    • 2014
  • Phospholipase D (PLD) catalyzed the generation of phosphatidic acid (PA) from phosphatidylcholine (PC) at the outer layer of the vesicles prepared through layer by layer via a double emulsion technique. The generation induced a curvature change in the vesicles, which eventually led them to fuse each other. The ratio of two-fatty-acid-tail ethanolamine (PE) to one-fatty-acid-tail ethanolamine (PE) was found to acquire the condition where the mixed-phospholipid vesicles were stable identically with pure two-fatty-acid-tail PC. The effect of the outer-layer mixture on the PLD-induced vesicle fusion was investigated using the fluorescence intensity change. 8-Aminonaph-thalene-1,3,6-trisulfonic acid disodium salt (ANTS) and p-Xylene-bis(N-pyridinium bromide) (DPX) were encapsulated in the vesicles, respectively, for the quantification of the fusion. The fluorescence scale was calibrated with the fluorescence of a 1/1 mixture of ANTS and DPX vesicles in NaCl buffer taken as 100% fluorescence (0% fusion) and the vesicles containing both ANTS and DPX as 0% fluorescence (100% fusion), considering the leakage into the medium studied directly in a separate experiment using vesicles containing both ANTS and DPX. The fusion data for each composition were acquired with the subtraction of the leakage from the quenching. From the monitoring, the vesicle fusion caused by the PLD reaction seems dominantly to occur rather than the vesicle lysis, because the composition effect on the fusion was observed identically with that on the change in the vesicle structure. Furthermore, the diameter measurements also support the fusion dominancy.

Comparative Ultrastructural Study on four Candida species and Cryptococcus neoformans (Candide species와 Cryptococcus neoformans의 전자현미경적 미세구조에 관한 비교 연구)

  • Yoon, Chul-Jong;Kim, Sung-Gwon;Kim, Soo-Sung;Chi, Je-Geun
    • Applied Microscopy
    • /
    • v.23 no.2
    • /
    • pp.97-106
    • /
    • 1993
  • This study was done to elucidate the electron microscopic characteristics of certain pathogenic fungi. Four Candida species, (C. albicans, C. tropicalis, C. parapsilosis and C. glabrate) and Cryptococcus neoformans were cultured for 3 days at $30^{\circ}C$ in the Sabouraud dextrose medium. After incubation, they were stored at $4^{\circ}C$ for 24hours. Fine structures were analyzed by morphometry, and Tukey's HSD test was used for statistics. On scanning electron microscopy C. albicans and C. neoformans were similar in size but different in shape, showing sphero-shape or ovalo-shape in C. neoformans. Surface of C. neoformans was coarse and spiny, but Candida species examined were uniformly smooth. In size, C. glabrata was the smallest among them. Budding scar as seen on the surface of Candida species by the number ranging from 1 to 7. Cryptococcus neoformans showed one or two budding scar. On transmission electron microscopy the cytoplasm of most yeast cells showed plentiful glycogen particles, mitochondria, peroxisomes and vacuoles. However, cell walls were different among four Candida species and Cryptococcus neoformans. The cell wall of Candida species consisted of fibrous layer, that was electron dense layer and transparent layer, in contrast to Cryptococcus neoformans consisted of electron dense layer with lamellar structure. This layer was two times thicker than that of Candida species. The outer layer of cell wall was of radiating pattern.

  • PDF

Bending Creep Properties of Cross-Laminated Wood Panels Made with Tropical Hardwood and Domestic Temperate Wood

  • PARK, Han-Min;GONG, Do-Min;SHIN, Moon-Gi;BYEON, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.608-617
    • /
    • 2020
  • For efficient use and expansion of domestic small- and medium-diameter woods, cross-laminated wood panels composed of tropical hardwoods and domestic temperate woods were fabricated, and the bending creep behavior under long-term loading was investigated. The bending creep curve of the cross-laminated wood panels showed an exponential function graph with a sharp increase at the top right side. The wood panel composed of a teak top layer and larch core and bottom layers recorded the highest initial deformation, and that composed of a merbau top layer and tulip core and bottom layers showed the lowest initial deformation. Creep deformation of the cross-laminated wood panels showed the highest value in that composed of a teak top layer and larch core and bottom layers and showed the lowest value in that composed of a merbau top layer and tulip core and bottom layers. The obtained creep deformation is 3.1-4.3 times that of merbau, however, it is remarkably lower than that of tulip and larch. The highest relative creep was recorded by the wood panel composed of merbau top layer and larch core and bottom layers, whereas that composed of the teak top layer and tulip core and bottom layers showed the lowest relative creep.

A Study on Beach Stabilization by Laying Drainage Layer (투수층 매설에 의한 해빈안정화에 관한 연구)

  • Hur, Dong-Soo;Lee, Woo-Dong;Jeon, Ho-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.325-335
    • /
    • 2010
  • The aim of this study is to survey the effects of laying drainage layer in sandy beach on beach stabilization. At first, the numerical model developed by Hur and Lee (2007), which is able to consider the flow through a porous medium with inertia, laminar and turbulent resistance terms, i.e. simulate directly WAve Structure Seabed/Sandy beach interaction and can determine the eddy viscosity with LES turbulent model in 3-D wave field (LES-WASS-3D), is validated by comparing with existing experimental data. And then, numerical simulation is carried out to examine the characteristics of wave-sandy beach interaction for a beach with/without drainage layer. From the numerical results, it is shown that mean ground-water level around a foreshore decreases and offshore-ward flow over a seabed reduces in case of a beach with drainage layer. Moreover, the effects of cross profile of drainage layer and incident wave condition on mean ground-water level around a foreshore are also discussed as well the distribution of wave setup around the foreshore.

A TWO CAVITY MODEL FOR UMBRAL OSCILLATIONS

  • Lee, Jeong-Woo;Yun, Hong-Sik
    • Journal of The Korean Astronomical Society
    • /
    • v.20 no.1
    • /
    • pp.27-47
    • /
    • 1987
  • In the present study a two-mode, separately concurring resonant cavity model is proposed for theoretical interpretation of the 3 minute umbral oscillation. The proposed model has been investigated by calculating the transmission coefficients of the waves propagating through the umbral photosphere (photospheric weak-field cavity) and chromosphere (chromospheric strong-field cavity) into the corona, for 3 different umbral model atmospheres by Staude (1982), Beebe et al. (1982) and Avrett (1981). In computing the transmission coefficients we made use of multi-layer approximation by representing the umbra] atmosphere by a number of separate layers with (1) temperature varying linearly with depth and (2) temperature constant within each layer. The medium is assumed to be compressible, non-viscous, perfectly conducting under gravity. The computed resonant periods, transmission spectra, phase spectra, and kinetic energy density of the waves associated with the oscillations are presented in comparison with the observations and their model dependent characteristics are discussed.

  • PDF

A Study on Measurement of the Half Value Layer in Diagnostic X-ray (진단용(診斷用) X선(線)의 반가층(半價層)에 관(關)한 연구(硏究))

  • Ko, Shin-Gwan
    • Journal of radiological science and technology
    • /
    • v.7 no.1
    • /
    • pp.53-66
    • /
    • 1984
  • The quality of continuous x-ray beam depends upon the half value layer which varies according to the geometric conditions, the filtration thickness, and the amount of accelerated voltage (KVP). Experiments were conducted on the amount of electric energy that was changed to x-ray energy, and on the relationship between KVp and the intensity of x-rays. The results were as follows: 1. The amount of x-rays were not equal under the condition of the same exposure factor. 2. The intensity of x-rays was attenuated by an exponential function the geometric conditions were "good" and it was not when they were "poor". 3. The thicker the total filtration substance was and the higher the KVp was, the bigger the amount of x-ray energy was. 4. The homogeneity of medium energy x-ray was the best, when the total filtration substance was 3.9mm A1. 5. The mean energy of continuous x-ray was about 45% of KVp.

  • PDF

Electrochemical Ionic Mass Transfer Correlation in Fluid-Saturated Porous Layer

  • Cho, Eun Su
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.814-817
    • /
    • 2015
  • A new ionic mass transfer correlation is derived for the fluid-saturated, horizontal porous layer. Darcy-Forchheimer model is used to explain characteristics of fluid motion. Based on the microscales of turbulence a backbone mass transfer relation is derived as a function of the Darcy-Rayleigh number, $Ra_D$ and the porous medium Schmidt number, $Sc_p$. For the Darcy's limit of $Sc_p{\gg}Ra_D$, the Sherwood number, Sh is a function of $Ra_D$ only. However, for the region of high $Ra_D$, Sh can be related with $Ra_DSc_p$. Based on the present backbone equation and the electrochemical mass transfer experiments which are electro plating or electroless plating, the new ionic mass transfer correlation is suggested in the porous media.