Browse > Article

Seismic Modeling for Inhomogeneous Medium  

Kim, Young-Wan (Korea Institute of Geoscience and Mineral resources)
Jang, Seong-Hyung (Korea Institute of Geoscience and Mineral resources)
Yoon, Wang-Jung (Geosystem Engineering in Chonnam National University)
Publication Information
Economic and Environmental Geology / v.40, no.6, 2007 , pp. 739-749 More about this Journal
Abstract
The seismic velocity at the formation varies widely with physical properties in the layers. These features on seismic shot gathers are not capable of reproducing normally by numerical modeling of homogeneous medium, so that we need that of random inhomogeneous medium instead. In this study, we conducted Gaussian autocorrelation function (ACF), exponential autocorrelation function and von Karman autocorrelation function for getting inhomogeneous velocity model and applied a simple geological model. According to the results, von Karman autocorrelation function showed short wavelength to the inhomogeneous velocity medium. For numerical modeling for a gas hydrate, we determined a geological model based on field data set gathered in the East sea. The numerical modeling results showed that the von Karman autocorrelation function could properly describe scattering phenomena in the gas hydrate velocity model which contains an inhomogeneous layer. Besides, bottom-simulating-reflectors and scattered waves which appear at seismic shot gather of the field data showed properly in the inhomogeneous numerical modeling.
Keywords
Inhomogeneous medium; Autocorrelation function; Hurst number; Seismic modeling;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aki, K., and B. Chouet (1975) Origin of coda waves: Source, attenuation and scattering effects, J. Geophys. Res., 80, p. 3322-3342   DOI
2 Jo, C.-H., Shin, C., and Suh, J. H. (1996) An optimal 9-­point, finite-difference, frequency-space, 2-D scalar wave extrapolator, Geophysics, Vol. 61, p. 529-537   DOI
3 Klimes, L. (2002) Correlation functions of random media, Pure and Applied Geophysics, Vol. 159, p. 1811-1831   DOI
4 Kvenvolden (1993) Gas hydrate - geological perspective and global change, Reviews of Geophysics, 31, p. 173-­187   DOI   ScienceOn
5 Yao, Y., and Xi, X. (2004) Reflected wavefield in random media: a review, J. Geophys. Eng., Vol. 1, p. 147-152   DOI   ScienceOn
6 Martini E. (2001) Seismic imaging below basalt, Ph. D. thesis, National University of Ireland
7 Rowe, M. M., and Gettrust, J. F. (1993) Fine structure of methane hydrate-bearing sediments on the Blake Outer Ridge ad determined from deep-tow multi­channel seismic data, J. Geophys. Research, 98, p. 463-473   DOI
8 Powell, J. A. (1984) On the effect of random timing errors on velocity estimates derived from normal moveout estimates, Geophysics, Vol. 49, p. 1361-1364   DOI
9 Kamei R., Hato M., and Matsuoka T. (2005) Random het­erogeneous model with bimodal velocity distribution for Methane Hydrate exploration, Mulli-Tamsa, Vol. 8, No.1, p. 41-49
10 Loewenthal, D., Wang, C. J., and Johnson, O. G. (1991) High order finite difference modeling and reverse time migration, Exploration Geophysics, Vol. 22, p. 533-545   DOI
11 Whalley, E. (1980) Speed of longitudinal sound in clath­rate hydrates, J. Geophys. Res., 85, p. 2539-2542   DOI
12 Holbrook, W. S., Hoskins, H., Wood, W. T., Stephen, R. A., Lizarralde, D., and the Leg 164 Scientific Party (1996) Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling, Science, 273, p. 1840-1843   DOI   ScienceOn
13 Kelly K. R., Ward, R. W., Treitel Sven, and Alford, R. M. (1974) Synthetic seismograms: A finite difference approach, Geophysics, 41, p. 2-27   DOI   ScienceOn
14 Korn, M. (1993) Seismic waves in random media, Journal of Applied Geophysics, Vol. 29, p. 247-269   DOI   ScienceOn
15 Pyrak-Nolte, L. (2002) Seismic imaging of fractured media, 5th International Workshop on the Application of Geophysics in Rock Engineering, Toronto, Canada
16 Shin C. S., and Sohn, H. J. (1998) A frequency space 2-­D scalar wave extrapolator using extended 25 points finite difference operators, Geophysics, Vol. 63, p. 289-296   DOI   ScienceOn
17 Stoll, E. D. and Bryan, G. M. (1979) Physical properties of sediments containing gas hydrates, J. Geophys. Res., 84, p. 1629-1634   DOI
18 Shipley, T. H., Houston, M. H., Buffler, R. T., Shaub, F. J., McMilen K. J., Ladd, J. W., and Worzel, J. L. (1979) Seismic evidence for widespread possible gas hydrate horizons continental slopes and rises, AAPG Bull., 63, p. 2204-2213
19 Alford, R. M., Kelly, K. R., and Boor, D. M. (1974) Accu­racy of finite difference modeling of the acoustic wave equation, Geophysics, 39, p. 834-842   DOI   ScienceOn
20 Sato, H. and Fehler, M. (1998) Seismic Wave Propagation and Scattering in the Heterogeneous Earth, Springer-­Verlag, New York
21 Gibson, B. and Levander, A. (1990) Apparent layering in common-midpoint stacked images of two-dimension­ally heterogeneous targets, Geophysics, 55, p. 1466-­1477   DOI
22 Wu R. S., and Aki, K. (1985) Elastic wave scattering by a random medium and the small-scale inhomogene­ities in the lithosphere, J. Geophys. Res., Vol. 90, p. 10261-10273   DOI
23 Andreassen, K., Hart, E. H. and MacKay, M. (1997) Amplitude versus offset modeling of the bottom sim­ulation reflection associated with submarine gas hydrate, Marine Geology, 137, p. 25-40   DOI   ScienceOn
24 Frankel, A., and Clayton, R. W. (1986) Finite difference simulations of seismic scattering: Implications for the propagation of short-period seismic waves in the crust and models of crustal heterogeneity, J. Geophys. Res., Vol. 91, p. 6465-6489   DOI
25 Jang, S. H., Suh, S. Y., and Go, J. S. (2006) Prestack depth migration for gas hydrate seismic data of the East sea, Korea Society of Economic and Environmental Geol­ogy, Vol. 39, No. 6, p. 711-717   과학기술학회마을