• Title/Summary/Keyword: medical radiation exposure

Search Result 582, Processing Time 0.034 seconds

Evaluation of Radiation Dose Reduction from the Automatic Exposure Control Technique in Different Manufactures Multi-Detector Computed Tomography (제조사별 다중 검출기 컴퓨터단층촬영 장비의 관전류 자동노출조절 기법의 방사선량 감소 평가)

  • Kim, Yeong-Ok;Seong, Yeol-Hun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.11a
    • /
    • pp.563-571
    • /
    • 2011
  • The purpose of the study was to evaluation of the radiation dose reduction using various automatic exposure control (AEC) systems in different manufactures multi-detector computed tomography (MDCT). We used three different manufacturers for the study: General Electric Healthcare, Philips Medical systems and Siemens Medical Solutions. The general scanning protocol was created for the each examination with the same scanning parameters as many as possible. In the various AEC systems, the evaluation of reduced-dose was evaluated by comparing to fixed mAs with using body phantom. Finally, when we applied to AEC for three manufacturers, the radiation dose reduction decreased each 35.3% in the GE, 58.2% in the Philips, and 48.6% in the Siemens. This applies to variety of the AEC systems which will be very useful to reduce the dose and to maintain the high quality.

  • PDF

A Study on Radiation Dose in Mammography (유방촬영(乳房撮影)의 방사선량(放射線量)에 관(關)한 연구(硏究))

  • Choi, Jong-Hak;Jeon, Man-Jin;Kim, Young-Ill;Choi, Jong-Woon
    • Journal of radiological science and technology
    • /
    • v.4 no.1
    • /
    • pp.31-36
    • /
    • 1981
  • We studied radiation dose in mammography through 34-46 kv range using acryl phantom. The obtained results were as follows: 1. Incident radiation was maximum with high kvp and thin added filtration. 2. Transmitted radiation by acryl phantom and its thickness were in reciprocal relationship. 3. The acryl thickness to produce comparable film density with soft tissue of breast was 6 cm. 4. The X-ray exposure for comparable density radiographs increased mammographic film more than medical x-ray film and the amount of x-ray exposure was directly proportional to the added filtration of x-ray beam. 5. The surface dose of x-ray exposure needed to produce film density of 1.0 for 6cm acryl phantom was 1,084-1,575mR in mammographic film and 476-625 mR in medical x-ray film.

  • PDF

Comparison of Radiosensitivity of Bacteria Isolated from Given Radiation Exposure History (방사선 피폭역을 달리하여 분리한 세균의 방사선감수성 비교)

  • 김기수;민봉희;이강순
    • Korean Journal of Microbiology
    • /
    • v.12 no.2
    • /
    • pp.67-76
    • /
    • 1974
  • This experiment was carried out to identify and to compare the radiosensitivities of bacteriz isolated from the sources of different radiation exposure histories. Among 10 strains isolated in this investigation, 4 strains of bacteria, Bacillus firmus, Bacillus brevis, Baciilus subtilis and Bacillus sphaericus were isolated from high and low radioactive sites simulaneously. Bacterial strains isolated from radioactive sources such as reactor and isotope production rooms were more resistant to irradiation than the microganisms from medical products and laboratories, however, there was no significance in radiosensitivity in the same species of bacteriz, even if they were isolated from different radiation exposure histories.

  • PDF

Basic Principles of CT Dose Index and Understanding of CT Parameter for Dose Reduction Technique (CT선량지표의 원리와 선량감소 방안에 관한 연구)

  • Kim, Jung-Su;Kwon, Soon-Mu;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2015
  • Computed tomography(CT) using radiation have potential risks. All medical radiographic examinations should require the justification of medical imaging examinations and optimization of the image quality and radiation exposure. The CT examination was higher radiation dose then general radiography. Especially pediatric CT examinations need to great caution of radiation risk. Because of pediatric patient was more sensitive of radiation exposure. Therefore, physician should consider the knowledge of CT radiation exposure indicator information for reduce a needless radiation exposure. This article was aim to understanding of CT exposure indicator, size-specific dose estimates by American Association of Physicists in Medicine (AAPM) report 204, XR 25 and understanding of CT dose reduction technique.

The Effect of Scattering Dose on the Thyroid During Mammography (Mammography시 Thyroid에 미치는 산란선량에 관한 연구)

  • Lee, Mi-Hwa;Dong, Kyung-Rae;Park, Seo-Joo;Whang, Sun-Kwang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.826-830
    • /
    • 2010
  • This study examined the effect of the scattering dose on the thyroid during a mammography examination. One hundred subjects for a mammography examination were enrolled in this study. The average glandular dose (AGD) and thyroid scattering dose (TSD) were measured. Statistical analysis was carried out using the percentage, t-test and co-variance. The mean radiation exposure to the breast and thyroid was $1.08{\pm}0.16$ and $0.14{\pm}0.04$ mGy, respectively. The percentage TSD to the AGD was 31.19%. There was no difference between the Rt. and Lt., and CC to MLO, and radiation dose to the TSD was 13.78% of the breast. Therefore, the volume of radiation exposure to the thyroid was 54.12% in a single routine mammography examination. These results suggest that the TSD was increased by increasing radiation dose to the breast. A thyroid protector is considered necessary to decrease the level of radiation exposure.

Set Up and Operation for Medical Radiation Exposure Quality Control System of Health Promotion Center (건강검진센터의 의료방사선 피폭 품질관리 시스템 구축 운영 경험 보고)

  • Kim, Jung-Su;Jung, Hae-Kyoung;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.13-17
    • /
    • 2016
  • In this study, standard model of medical radiation dosage quality control system will be suggested and the useful of this system in clinical field will be reviewed. Radiation dosage information of modalities are gathered from digital imaging and communications in medicine(DICOM) standard data(such as DICOM dose SR and DICOM header) and stored in database. One CT scan, two digital radiography modalities and two mammography modalities in one health promotion center in Seoul are used to derive clinical data for one month. After 1 months research with 703 CT scans, the study shows CT $357.9mGy{\cdot}cm$ in abdomen and pelvic CT, $572.4mGy{\cdot}cm$ in brain without CT, $55.9mGy{\cdot}cm$ in calcium score/heart CT, screening CT at $54mGy{\cdot}cm$ in chest screening CT(low dose screening CT scan), $284.99mGy{\cdot}cm$ in C-spine CT and $341.85mGy{\cdot}cm$ in L-spine CT as health promotion center reference level of each exam. And with 1955 digital radiography cases, it shows $274.0mGy{\cdot}cm2$ and for mammography 6.09 mGy is shown based on 536 cases. The use of medical radiation shall comply with the principles of justification and optimization. This quality management of medical radiation exposure must be performed in order to follow the principle. And the procedure to reduce the radiation exposure of patients and staff can be achieved through this. The results of this study can be applied as a useful tool to perform the quality control of medical radiation exposure.

Analysis of Cosmic Radiation Dose of People by Abroad Travel (일반인들의 항공여객기 이용 시 우주방사선 피폭선량 비교 분석)

  • Jang, Donggun;Shin, Sanghwa
    • Journal of radiological science and technology
    • /
    • v.41 no.4
    • /
    • pp.339-344
    • /
    • 2018
  • Humans received an exposure dose of 2.4 mSv of natural radiation per year, of which the contribution of spacecraft accounts for about 75%. The crew of the aircraft has increased radiation exposure doses based on cosmic radiation safety management regulations There is no reference to air passengers. Therefore, in this study, we measured the radiation exposure dose received in the sky at high altitude during flight, and tried to compare the radiation exposure dose received by ordinary people during flight. We selected 20 sample specimens, including major tourist spots and the capital by continent with direct flights from Incheon International Airport. Using the CARI-6/6M model and the NAIRAS model, which are cosmic radiation prediction models provided at the National Radio Research Institute, we measured the cosmic radiation exposure dose by the selected flight and departure/arrival place. In the case of exposure dose, Beijing was the lowest at $2.87{\mu}Sv$ (NAIRAS) and $2.05{\mu}Sv$ (CARI - 6/6M), New York had the highest at $146.45{\mu}Sv$ (NAIRAS) and $79.42{\mu}Sv$ (CARI - 6/6M). We found that the route using Arctic routes at the same time and distance will receive more exposure dose than other paths. While the dose of cosmic radiation to be received during flight does not have a decisive influence on the human body, because of the greater risk of stochastic effects in the case of frequent flights and in children with high radiation sensitivity Institutional regulation should be prepared for this.

A Study on recognition for Medical radiation of health and non-health for radiation safety (방사선안전을 위한 보건/비보건계열의 의료방사선 인식도 분석)

  • Choi, Sung-Oog;Lee, Myung-Sun
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.2
    • /
    • pp.93-100
    • /
    • 2016
  • This study implemented the survey and analysis of the exposure to radiation by using the questionnaire targeting H Health College, located in Daejeon from September 1st, 2014 to October 15th. A total of 400 copies of the questionnaire was distributed and among them, 385 copies, excluding 15 omitted ones (total collection ratio: 96.3%), were used for the analysis. The analysis results are as follows. For the harmfulness of radiation for diagnosis, the average of the health-related was 3.15 and the average of the health-unrelated was 2.82, which the health-related students recognized the harmfulness of radiation for diagnosis higher (p<.001). The necessity of radiation for diagnosis was appeared higher from the health-related students as the average of the health-related was 3.07 and 2.52 for the average of the health-unrelated (p<.001). The recognition on the prevention of the exposure to radiation was higher from the health-related students as the average of the health-related was 3.13 and 1.84 for the average of the health-unrelated (p<.001). From this study, the necessity of using radiation from the medical field and the recognition on its harmfulness appeared to have a big difference between the health-related and health-unrelated. For such, the accurate understanding of the recognition on radiation and the education to improve recognition on radiation are considered to be required.

Verification of Harmonization of Dose Assessment Results According to Internal Exposure Scenarios

  • Kim, Bong-Gi;Ha, Wi-Ho;Kwon, Tae-Eun;Lee, Jun-Ho;Jung, Kyu-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.143-153
    • /
    • 2018
  • Background: The determination of the amount of radionuclides and internal dose for the worker who may have intake of radionuclides results in a variation due to uncertainty of measurement data and ingestion information. As a result of this, it is possible that for the same internal exposure scenario assessors could make considerably different estimation of internal dose. In order to reduce this difference, internal exposure scenarios for nuclear facilities were developed, and intercomparison were made to determine the harmonization of dose assessment results among the assessors. Materials and Methods: Seven cases on internal exposures incidents that have occurred or may occur were prepared by referring to the intercomparison excercise scenario that NRC and IAEA have carried out. Based on this, 16 nuclear facilities concerned with internal exposure in Korea were asked to evaluate the scenarios. Each result was statistically determined according to the harmonization discrimination criteria developed by IDEAS/IAEA. Results and Discussion: The results were evaluated as having no outliers in all 7 cases. However, the distribution of the results was spread by various causes. They can be divided into two wide categories. The first one is the distribution of the results according to the assumption of the intake factors and the evaluation factors. The second one is distribution due to misapplication of calculation method and factors related to internal exposure. Conclusion: In order to satisfy the harmonization criteria and accuracy of the internal exposure dose evaluation, it is necessary that exact guidelines should be set on low dose, and various intercomparison cases also be needed including high dose exposure as well as the specialized education. The aim of the blind test is to make harmonization evaluation, but it will also contribute to securing the expertise and high quality of dose evaluation data through the discussion among the participants.

Study of radiation exposure on human body using of Computed Tomography (전산화단층촬영 검사 시 인체에 미치는 방사선피폭선량 분석연구)

  • Seon, Jong-Ryoul;Yoo, Se-Jong
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.193-198
    • /
    • 2015
  • This study analyzed the total number of 19,636 patients and radiation technologists, 11,433 of male and 8,203 of female by examined body parts, age, types of detectors, the using contrast enhancement and working condition of the technologists, regular staffs or rotation-duty staffs, based on the K-DOS program distributed by FDA with the DLP value of diagnostic evaluation. The result shows that the effective radiation dose was 0.7mSv~41.7mSv for each region and male patients had more radiation exposure than females. And the amount of exposure was also affected by the types and the method of detectors. Furthermore, the regular staffs took the role of helping the patient to get reduced amount of radiation exposure than rotation duty-staffs. Computed tomography (CT) use has increased dramatically over the past several decades. In this reason, to support the patients and the workers' health in the field, the hospitals should apply specialized regular working radiation technologist system and manufacturing companies of those CTs should develop low medical radiation exposure devices.