• Title/Summary/Keyword: medical radiation exposure

Search Result 580, Processing Time 0.03 seconds

Conclusions and Suggestions on Low-Dose and Low-Dose Rate Radiation Risk Estimation Methodology

  • Sakai, Kazuo;Yamada, Yutaka;Yoshida, Kazuo;Yoshinaga, Shinji;Sato, Kaoru;Ogata, Hiromitsu;Iwasaki, Toshiyasu;Kudo, Shin'ichi;Asada, Yasuki;Kawaguchi, Isao;Haeno, Hiroshi;Sasaki, Michiya
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.1
    • /
    • pp.14-23
    • /
    • 2021
  • Background: For radiological protection and control, the International Commission on Radiological Protection (ICRP) provides the nominal risk coefficients related to radiation exposure, which can be extrapolated using the excess relative risk and excess absolute risk obtained from the Life Span Study of atomic bomb survivors in Hiroshima and Nagasaki with the dose and dose-rate effectiveness factor (DDREF). Materials and Methods: Since it is impossible to directly estimate the radiation risk at doses less than approximately 100 mSv only from epidemiological knowledge and data, support from radiation biology is absolutely imperative, and thus, several national and international bodies have advocated the importance of bridging knowledge between biology and epidemiology. Because of the accident at the Tokyo Electric Power Company (TEPCO)'s Fukushima Daiichi Nuclear Power Station in 2011, the exposure of the public to radiation has become a major concern and it was considered that the estimation of radiation risk should be more realistic to cope with the prevailing radiation exposure situation. Results and Discussion: To discuss the issues from wide aspects related to radiological protection, and to realize bridging knowledge between biology and epidemiology, we have established a research group to develop low-dose and low-dose-rate radiation risk estimation methodology, with the permission of the Japan Health Physics Society. Conclusion: The aim of the research group was to clarify the current situation and issues related to the risk estimation of low-dose and low-dose-rate radiation exposure from the viewpoints of different research fields, such as epidemiology, biology, modeling, and dosimetry, to identify a future strategy and roadmap to elucidate a more realistic estimation of risk against low-dose and low-dose-rate radiation exposure.

Exposure of the Population in the United States to Ionizing Radiation

  • Carter Melvin W.;Oliver Robert W.
    • Journal of Radiation Protection and Research
    • /
    • v.12 no.2
    • /
    • pp.37-50
    • /
    • 1987
  • The exposure of the population in the United States to ionizing radiation has recently been evaluated by the National Council on Radiation Protection and Measurements (NCRP). This was done by constituting six organizational groups to address various phases of the work and the results of this work are summarized in this article. The article is based on the report, by the same title, which is scheduled for publication by the NCRP in September, 1987. The six organizational groups are titled Radiation Exposure from Consumer Products, Natural Background Radiation, Radiation Associated with Medical Examinations, Radiation Received by Radiation Employees, Public Exposure from Nuclear Power, and Exposure from Miscellaneous Environmental Sources. These titles are descriptive of the subject areas covered by each of these separate groups. The data evaluated are for the years 1977-1984 with the majority of the data being for the period 1980-1982. Summary information is presented and discussed for the number of people exposed to given sources, the effective dose equivalent, the average effective dose equivalent to the U.S. population, and the genetically significant dose equivalent. The average annual effective dose equivalent from all sources to the U.S. population is approximately 3.6 mSv (360 mrem). Exposures to natural sources make the largest contribution to this total. Radon and radon decay products contribute 2.0 mSv (200 mrem) whereas the other naturally occurring radionuclides contribute 1.0 mSv (100 mrem). Among man-made or enhanced sources, medical exposures make the largest additional contributions, namely 0.39 mSv (39 mrem) for diagnosis and 0.14 mSv (14 mrem) for nuclear medicine. It was not possible to evaluate exposures for therapy. Most of the other sources of population exposure, including nuclear power and consumer products, are minor. A possible exception would be the use of tobacco products. These exposures are discussed in relation to a negligible individual risk level of $10{\mu}Sv/y$ (1 mrem/y). The NCRP considers exposures below the negligible individual risk level as trivial and as such should be dismissed.

  • PDF

Cancer Risk from Medical Radiation Procedures for Coronary Artery Disease: A Nationwide Population-based Cohort Study

  • Hung, Mao-Chin;Hwang, Jeng-Jong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2783-2787
    • /
    • 2013
  • To assess the risk of cancer incidence after medical radiation exposure for coronary artery disease (CAD), a retrospective cohort study was conducted based on Taiwan's National Health Insurance Research Database (NHIRD). Patients with CAD were identified according to the International Classification of Diseases code, 9th Revision, Clinical Modification (ICD-9-CM), and their records of medical radiation procedures were collected from 1997 to 2010. A total of 18,697 subjects with radiation exposure from cardiac imaging or therapeutic procedures for CAD were enrolled, and 19,109 subjects receiving cardiac diagnostic procedures without radiation were adopted as the control group. The distributions of age and gender were similar between the two populations. Cancer risks were evaluated by age-adjusted incidence rate ratio (aIRR) and association with cumulative exposure were further evaluated with relative risks by Poisson regression analysis. A total of 954 and 885 subjects with various types of cancers in both cohorts after following up for over 10 years were found, with incidences of 409.8 and 388.0 per 100,000 person-years, respectively. The risk of breast cancer (aIRR=1.85, 95% confidence interval: 1.14-3.00) was significantly elevated in the exposed female subjects, but no significant cancer risk was found in the exposed males. In addition, cancer risks of the breast and lung were increased with the exposure level. The study suggests that radiation exposure from cardiac imaging or therapeutic procedures for CAD may be associated with the increased risk of breast and lung cancers in CAD patients.

The Characteristic of Radiation Exposure for Radiologist with Applying Condition in Interventional Radiology in Cardiology (심장내과의 중재적 시술시 시술조건에 따른 방사선사의 방사선 노출 특성)

  • Park, Jeong-Kyu;Cho, Euy-Hyun
    • Journal of Digital Contents Society
    • /
    • v.13 no.3
    • /
    • pp.421-429
    • /
    • 2012
  • Lately, the number of interventional radiology is increased by the extension of procedure in medical radiation, and radiation exposure may be appeared differently by interventional radiologists, it is caused increase of radiation dose for radiation worker, patient, and radiologists. This study has done a comparative analysis characteristic of radiation exposure for five radiologists who executed interventional cardiology for 303 patients in S university hospital of Gyeong-Buk from Nov. 1, 2011 to Jan. 31, 2011. The average exposure time of five radiologists was 697.95sec. The average of cumulative DAP(exp) for patients was $52,730mGycm^2$ and the average of total DAP for patients was $104,875.14mGycm^2$. The average of frames for image was 855.52 frames in acquired images, and the average of frames for images was 802.2 frames in exposure images. They were statistically significant differences (p<0.05). Exposure time, cumulative DAP(fluro), cumulative DAP(exp), total DAP, acquired image, and exposure image were high correlation except cumulative DAP(exp), and acquired runs in x-ray exposure characteristics of machine. Exposure time was a great influence on radiologist. It signified that the more exposure time lead to the more radiation dose for radiologist. Radiation dose is related to ability, experience, difficulty, and precision of procedures in interventional procedure. The number of angiography and exposure time is difficult to control by radiologists. Therefore, it is in need of reasonable system which was evaluated the real dose of medical teams in interventional proceedings. We think that self education and training are required to reduce radiation dose for radiologists and radiation workers.

A Randomized Controlled Trial about the Levels of Radiation Exposure Depends on the Use of Collimation C-arm Fluoroscopic-guided Medial Branch Block

  • Baek, Seung Woo;Ryu, Jae Sung;Jung, Cheol Hee;Lee, Joo Han;Kwon, Won Kyoung;Woo, Nam Sik;Kim, Hae Kyoung;Kim, Jae Hun
    • The Korean Journal of Pain
    • /
    • v.26 no.2
    • /
    • pp.148-153
    • /
    • 2013
  • Background: C-arm fluoroscope has been widely used to promote more effective pain management; however, unwanted radiation exposure for operators is inevitable. We prospectively investigated the differences in radiation exposure related to collimation in Medial Branch Block (MBB). Methods: This study was a randomized controlled trial of 62 MBBs at L3, 4 and 5. After the patient was laid in the prone position on the operating table, MBB was conducted and only AP projections of the fluoroscope were used. Based on a concealed random number table, MBB was performed with (collimation group) and without (control group) collimation. The data on the patient's age, height, gender, laterality (right/left), radiation absorbed dose (RAD), exposure time, distance from the center of the field to the operator, and effective dose (ED) at the side of the table and at the operator's chest were collected. The brightness of the fluoroscopic image was evaluated with histogram in Photoshop. Results: There were no significant differences in age, height, weight, male to female ratio, laterality, time, distance and brightness of fluoroscopic image. The area of the fluoroscopic image with collimation was 67% of the conventional image. The RAD ($29.9{\pm}13.0$, P = 0.001) and the ED at the left chest of the operators ($0.53{\pm}0.71$, P = 0.042) and beside the table ($5.69{\pm}4.6$, P = 0.025) in collimation group were lower than that of the control group ($44.6{\pm}19.0$, $0.97{\pm}0.92$, and $9.53{\pm}8.16$), resepectively. Conclusions: Collimation reduced radiation exposure and maintained the image quality. Therefore, the proper use of collimation will be beneficial to both patients and operators.

EVALUATION OF BRACHYTHERAPY FACILITY SHIELDING STATUS IN KOREA OBTAINED FROM RADIATION SAFETY REPORTS

  • Keum, Mi Hyun;Park, Sung Ho;Ahn, Seung Do;Cho, Woon-Kap
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.695-700
    • /
    • 2013
  • Thirty-eight radiation safety reports for brachytherapy equipment were evaluated to determine the current status of brachytherapy units in Korea and to assess how radiation oncology departments in Korea complete radiation safety reports. The following data was collected: radiation safety report publication year, brachytherapy unit manufacturer, type and activity of the source that was used, affiliation of the drafter, exposure rate constant, the treatment time used to calculate workload and the HVL values used to calculate shielding design goal values. A significant number of the reports (47.4%) included the personal information of the drafter. The treatment time estimates varied widely from 12 to 2,400 min/week. There was acceptable variation in the exposure rate constant values (ranging between 0.469 and 0.592 ($R{\cdot}m^2/Ci{\cdot}hr$), as well as in the HVLs of concrete, steel and lead for Iridium-192 sources that were used to calculate shielding design goal values. There is a need for standard guidelines for completing radiation safety reports that realistically reflect the current clinical situation of radiation oncology departments in Korea. The present study may be useful for formulating these guidelines.

Necessity of Mandatory Records on Radiological Examination (방사선검사에 관한 기록 의무화의 필요성)

  • Hong, Dong-Hee;Lim, Cheong-Hwan;Kim, Yon-Min;Kim, Eun-Hye;Yoo, Se-Jong;Yoon, Yong-Su;Lim, Woo-Taek;Jung, Young-Jin;Jung, Hong-Ryang;Joo, Young-Cheol;Choi, Ji-Won;Kang, Byung-Sam;Park, Myeong-Hwan;Back, Geum-Mun;Yang, Oh-Nam;Rhim, Jae-Dong;Jeong, Bong-Jae
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.399-407
    • /
    • 2021
  • This study discussed the validity and necessity of compulsory recording of radiographic examination performed by radiological technologist on patients in medical institutions related to radiation exposure. Also, this study provided reasonable evidence of radiographic examination related medical records can contribute to the improvement of public health. Based on overseas cases of implementing a radiographic examination record system, the essential items to be included in medical record are the exposure date, exposure time, exposure method, exposure conditions that is tube voltage, tube current. Name and license number of the radiological technologist who performed the examination should be include in medical record. It is expected that the medical record of the total amount of radiation exposure per year would be in giving the maximum benefit with the minimum exposure to the medical radiation examination of the patient. In addition, interventional radiography medical record should also include exposure time, type and dose of the contrast medium.

Analysis of Changed Bio-Signal to Radiation Exposure of Nuclear Medicine Worker (핵의학 종사자의 방사선 피폭에 따른 생체신호 변화 분석)

  • Lee, Hwun-Jae;Lee, Sang-Bock
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.1
    • /
    • pp.27-34
    • /
    • 2007
  • In this paper, We are evaluated about bio-signal between general workers and nuclear medicine workers which is more radiation exposure relatively. In order to reciprocal evaluated two group, we experimented nuclear medicine workers in Chung-Buk National University Hospital at department of nuclear medicine and worker in Chon-Nam National University Hospital at CT room, general radiographic room, medical recording room, receipt room, general office room. Used of experimental Equipments as follows, for a level of radiation measurement by pocket dosimeter which made by Arrow-Tech company, for heart rate and blood pressure measurement by TONOPORT V which made by GE medical systems company, for heat flux and skin temperature and energy expenditure measurement by Armband senseware 2000 which made by Bodymedia company. Result of experiment obtains as follows: 1) Individual radiation exposure is recorded 3.05 uSv at department of nuclear medicine and order as follows CT room, general radiograpic room, medical recording room, receipt room, general office room. Department of nuclear medicine more 1.5 times than other places. 2) Radiation accumulated dose is not related to Heat flux, Skin temperature, Energy expenditure. 3) Blood pressure is recorded equal to nuclear medical workers, general officer, general people about systolic blood pressure and diastolic blood pressure. Compared to blood pressure between nuclear medical works which is more radiation exposure and other workers was not changed. Consequently, more radiation exposed workers at nuclear medicine field doesn't have hazard.

Determination of Scattered Radiation to the Thyroid Gland in Dental Cone Beam Computed Tomography

  • Wilson Hrangkhawl;Winniecia Dkhar;T.S. Madhavan;S. Sharath;R. Vineetha;Yogesh Chhaparwal
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.15-19
    • /
    • 2023
  • Background: Cone beam computed tomography (CBCT) is a specialized medical equipment and plays a significant role in the diagnosis of oral and maxillofacial diseases and abnormalities; however, it is attributed to risk of exposure of ionizing radiation. The aim of the study was to estimate and determine the amount of scattered radiation dose to the thyroid gland in dental CBCT during maxilla and mandible scan. Materials and Methods: The average scattered radiation dose for i-CAT 17-19 Platinum CBCT (Imaging Sciences International) was measured using a Multi-O-Meter (Unfors Instruments), placed at the patient's neck on the skin surface of the thyroid cartilage, with an exposure parameter of 120 kVp and 37.07 mAs. The surface entrance dose was noted using the Multi-O-Meter, which was placed at the time of the scan at the level of the thyroid gland on the anterior surface of the neck. Results and Discussion: The surface entrance dose to the thyroid from both jaws scans was 191.491±78.486 µGy for 0.25 mm voxel and 26.9 seconds, and 153.670±74.041 µGy from the mandible scan, whereas from the maxilla scan the surface entrance dose was 5.259±10.691 µGy. Conclusion: The surface entrance doses to the thyroid gland from imaging of both the jaws, and also from imaging of the maxilla and mandible alone were within the threshold limit. The surface entrance dose and effective dose in CBCT were dependent on the exposure parameters (kVp and mAs), scan length, and field of view. To further reduce the radiation dose, care should be taken in selecting an appropriate protocol as well as the provision of providing shielding to the thyroid gland.

Evaluation of Radiation Dose Reduction from the Automatic Exposure Control Technique in Different Manufactures Multi-Detector Computed Tomography (제조사별 다중 검출기 컴퓨터단층촬영 장비의 관전류 자동노출조절 기법의 방사선량 감소 평가)

  • Kim, Yeong-Ok;Seong, Yeol-Hun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.11a
    • /
    • pp.563-571
    • /
    • 2011
  • The purpose of the study was to evaluation of the radiation dose reduction using various automatic exposure control (AEC) systems in different manufactures multi-detector computed tomography (MDCT). We used three different manufacturers for the study: General Electric Healthcare, Philips Medical systems and Siemens Medical Solutions. The general scanning protocol was created for the each examination with the same scanning parameters as many as possible. In the various AEC systems, the evaluation of reduced-dose was evaluated by comparing to fixed mAs with using body phantom. Finally, when we applied to AEC for three manufacturers, the radiation dose reduction decreased each 35.3% in the GE, 58.2% in the Philips, and 48.6% in the Siemens. This applies to variety of the AEC systems which will be very useful to reduce the dose and to maintain the high quality.

  • PDF