• Title/Summary/Keyword: medical micro part

Search Result 32, Processing Time 0.032 seconds

Development of Micro-needle Device for Direct Drug Delivery into the Dermis (직접약물전달형 마이크로니들 장치)

  • Eum, Nyeon-Sik;Kim, Hyung-Kyung;Han, Jung Hyun;Kim, Su-Jeong;Park, Hee-Joon;Kang, Shin-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.202-206
    • /
    • 2012
  • In this study, we developed transdermal direct drug delivery device using micro-needle painlessly. We has fabricated micro-needle that is 130 ${\mu}m$ thickness and 250 ${\mu}m$length with 10 ${\mu}m$ spiral groove for rolling down drug. Head part of micro-needle device is composed of 20ea micro-needles, an on-off valve and a protective cap. Glass bottle for containing drug is connected to head part of micro-needle device. We examined the puncture characteristic testing using porcine skin and drug delivery testing using porcine, rat skin with Indian Ink.

A study on the machining of micro-extruding die using micro-drilling (마이크로 드릴링을 이용한 미세압출다이 가공에 관한 연구)

  • 민승기;제태진;이응숙;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.161-166
    • /
    • 2003
  • The micro-extruding die is a die for manufacturing of fine-wire by extruding process. The fine-wire made from the micro-extruding can be effectively applied to fields of semiconductor parts and medical parts etc. It is predicted that the demand of fine-wire in industry is more and more increasing. In this study $\phi50\mu m$ micro-drill which is coated with diamond is used for drilling of super micro-hole sizes. For the machining of taper parts of entrance and exit, drill having $\phi50\mu\textrm{mm}$ inclination angle $20^{\circ}$and angle $30^{\circ}$ is used. This is useful for anti tool-breakage and excessive too-wear in drilling process. After micro-drilling, the polishing process by diamond abrasive and polishing wood s carried out for increasing surface roughness.

  • PDF

A study on the micro-hole machining for micro-extruding die (극세선용 압출다이의 미세구멍 가공기술 연구)

  • 민승기;제태진;이응숙;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.202-205
    • /
    • 2002
  • The micro-extruding die is a die for manufacturing of fine-wire by extruding process. The fine-wire made from the micro-extruding can be effectively applied to fields of semiconductor parts and medical parts etc. It is predicted that the demand of fine-wire in industry is more and more increasing. In this study $\Phi$ 50${\mu}{\textrm}{m}$ micro-drill which is coated with diamond is used for drilling of super micro-hole sues. For the machining of taper parts of entrance and exit, drill having $\Phi$ 9mm inclination angle 20$^{\circ}$ is used. This is useful for anti tool-breakage in drilling process. After micro-drilling, the polishing process by abrasive is carried out for increasing surface roughness.

  • PDF

Micro-computed tomography evaluation of the effects of orthodontic force on immature maxillary first molars and alveolar bone mineral density of Sprague-Dawley rats

  • Jingwei Wang;Ruofang Zhang;Zhuoying Zhang;Chao Geng;Yanpeng Zhang
    • The korean journal of orthodontics
    • /
    • v.53 no.3
    • /
    • pp.205-216
    • /
    • 2023
  • Objective: To investigate changes in the immature teeth of Sprague-Dawley rats during orthodontic treatment and to explore the changes in the peri-radicular alveolar bone through micro-computed tomography (CT). Methods: Twenty-five 26-day-old male Sprague-Dawley rats were included. The maxillary left first molar was moved mesially under a continuous force of 30 cN, and the right first molar served as the control. After orthodontic treatment for 7, 14, 21, 28, and 42 days, the root length, tooth volume, and alveolar bone mineral density (BMD) around the mesial root were measured through micro-CT. Results: The immature teeth continued to elongate after application of orthodontic force. The root length on the force side was significantly smaller than that on the control side, whereas the differences in the volume change between both sides were not statistically significant. Alveolar bone in the coronal part of the compression and tension sides showed no difference in BMD between the experimental and control groups. The BMD of the experimental group decreased from day 14 to day 42 in the apical part of the compression side and increased from day 7 to day 42 in the apical part of the tension side. The BMD of the experimental group decreased in the root apex part on day 7. Conclusions: The root length and volume of immature teeth showed continued development under orthodontic forces. Alveolar bone resorption was observed on the compression side, and bone formation was observed on the tension side.

Control System for Smart Medical Illumination Based on Voice Recognition (음성인식기반 스마트 의료조명 제어시스템)

  • Kim, Min-Kyu;Lee, Soo-In;Cho, Hyun-Kil
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.3
    • /
    • pp.179-184
    • /
    • 2013
  • A voice recognition technology as a technology fundament plays an important role in medical devices with smart functions. This paper describes the implementation of a control system that can be utilized as a part of illumination equipment for medical applications (IEMA) based on a voice recognition. The control system can essentially be divided into five parts, the microphone, training part, recognition part, memory part, and control part. The system was implemented using the RSC-4x evaluation board which is included the micro-controller for voice recognition. To investigate the usefulness of the implemented control system, the experiments of the recognition rate was carried out according to the input distance for voice recognition. As a result, the recognition rate of the control system was more than 95% within a distance between 0.5 and 2m. The result verified that the implemented control system performs well as the smart control system based for an IEMA.

Computer-Assisted Multiple Temperature Measurement of Infant Incubator (컴퓨터에 의한 신생아용 보육기의 다접점 온도측정)

  • Kim, Won-Ki;Kim, Nan-Hyun;Yoo, Sun-Kuk
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.9-18
    • /
    • 1991
  • A micro- computer system has been designed to evaluate the performance of commercial infant incubator and to develope the temperature controller of new incubator. The measure- ment system used a hybrid of analog electronics for amplification, integration, and switches and micro-computer for data storage, data display, and control of relay. This approach has been applied to measure the warm-up time, temperature stability, open/close door and port- holes, and temperature distribution on the mattress. The micro-computer provides on-line ac cess of multi-point temperature data, simplifies the analog part of the circuit and gives the flexibility.

  • PDF

New Material and Processing Issues for High Quality Parts by Micro-MIM

  • Rota, A.;Imgrund, Ph.;Haack, J.;Petzoldt, F.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.34-35
    • /
    • 2006
  • The development of Micro MIM as a new manufacturing process for metallic micro parts made of advanced functional materials has been the subject of considerable research over the last years. This paper addresses important quality aspects on processing of new materials by Micro-MIM. Three examples of new functional materials that can be processed are reviewed in this paper. The first example is two-component-Micro-MIM to obtain multi-functional devices. A micro positioning encoder consisting of a magnetic / non-magnetic material combination is presented. The second issue is series production of the replicate of the smallest human bone in the ear (stapes) from Titanium as an example of medical application. Quality assurance and reproducibility in terms of injection moulding parameters are addressed. In the third part, first results on the processing of the shape memory alloy NiTi by Micro-MIM are presented. Potential applications include biocompatible devices and transportation, for example automotive and aerospace. Processing routes and initial microstructures obtained are discussed.

  • PDF

Development of the Patient Monitor Using Microprocessor (마이크로 프로세서에 의한 환자감시장치의 개발)

  • 김남현;유선국
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.309-316
    • /
    • 1989
  • In this paper, the patient monitor consisting of amplifier, scan converter, A/D converter, CRT amplifier, and micro-controller part was developed. This patient monitor measures the patient's 4 states in the hospital such as electro-cardiography, respiration, blood pressure, and temperature. The control and processing methods based on micro-processor employ the flexibility, extensibility and economy over other conventional system. The followings are incorporated in this system. First, record the heart rate trends for 1 and 4 hours respectively. Second, measures the respiration by impedance pneumography. Third, measures the blood pressure with auto-zero balance. Fourth, linesrize the temperatures by bridge method.

  • PDF

Machining of The Micro Nozzle Using Focused Ion Beam (집속이온빔을 이용한 마이크로 노즐의 제작)

  • Kim G.H.;Min B.K.;Lee S.J.;Park C.W.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1194-1197
    • /
    • 2005
  • Micro nozzle is employed as a dynamic passive valve in micro fluidic devices. Micro nozzle array is used in micro droplet generation in bio-medical applications and propulsion device for actuating satellite and aerospace ship in vacuum environments. Aperture angle and the channel length of the micro nozzle affect its retification efficiency, and thus it is needed to produce micro nozzle precisely. MEMS process has a limit on making a micro nozzle with high-aspect ratio. Reactive ion etching process can make high-aspect ratio structure, but it is difficult to make the complex shape. Focused ion beam deposition has advantage in machining of three-dimensional complex structures of sub-micron size. Moreover, it is possible to monitor machining process and to correct defected part at simultaneously. In this study, focused ion beam deposition was applied to micro nozzle production.

  • PDF

Down-regulation of miRNA-452 is Associated with Adriamycin-resistance in Breast Cancer Cells

  • Hu, Qing;Gong, Jian-Ping;Li, Jian;Zhong, Shan-Liang;Chen, Wei-Xian;Zhang, Jun-Ying;Ma, Teng-Fei;Ji, Hao;Lv, Meng-Meng;Zhao, Jian-Hua;Tang, Jin-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5137-5142
    • /
    • 2014
  • Adriamycin (ADR) is an important chemotherapeutic agent frequently used in treatment of breast cancer. However, resistance to ADR results in treatment failure in many patients. Recent studies have indicated that microRNAs (miRNAs) may play an important role in such drug-resistance. In the present study, microRNA-452 (miR-452) was found to be significantly down-regulated in adriamycin-resistant MCF-7 cells (MCF-7/ADR) compared with the parental MCF-7 cells by miRNA microarray and real-time quantitative PCR (RT-qPCR). MiR-452 mimics and inhibitors partially changed the adriamycin-resistance of breast cancer cells, as also confirmed by apoptosis assay. In exploring the potential mechanisms of miR-452 in the adriamycin-resistance of breast cancer cells, bioinformatics analysis, RT-qPCR and Western blotting showed that dysregulation of miR-452 played an important role in the acquired adriamycin-resistance of breast cancer, maybe at least in part via targeting insulin-like growth factor-1 receptor (IGF-1R).