DOI QR코드

DOI QR Code

Micro-computed tomography evaluation of the effects of orthodontic force on immature maxillary first molars and alveolar bone mineral density of Sprague-Dawley rats

  • Jingwei Wang (Department of Orthodontic, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University) ;
  • Ruofang Zhang (Department of Orthodontic, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University) ;
  • Zhuoying Zhang (Department of Orthodontic, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University) ;
  • Chao Geng (Department of Orthodontic, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University) ;
  • Yanpeng Zhang (Department of Orthodontic, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University)
  • Received : 2022.09.26
  • Accepted : 2023.04.28
  • Published : 2023.05.25

Abstract

Objective: To investigate changes in the immature teeth of Sprague-Dawley rats during orthodontic treatment and to explore the changes in the peri-radicular alveolar bone through micro-computed tomography (CT). Methods: Twenty-five 26-day-old male Sprague-Dawley rats were included. The maxillary left first molar was moved mesially under a continuous force of 30 cN, and the right first molar served as the control. After orthodontic treatment for 7, 14, 21, 28, and 42 days, the root length, tooth volume, and alveolar bone mineral density (BMD) around the mesial root were measured through micro-CT. Results: The immature teeth continued to elongate after application of orthodontic force. The root length on the force side was significantly smaller than that on the control side, whereas the differences in the volume change between both sides were not statistically significant. Alveolar bone in the coronal part of the compression and tension sides showed no difference in BMD between the experimental and control groups. The BMD of the experimental group decreased from day 14 to day 42 in the apical part of the compression side and increased from day 7 to day 42 in the apical part of the tension side. The BMD of the experimental group decreased in the root apex part on day 7. Conclusions: The root length and volume of immature teeth showed continued development under orthodontic forces. Alveolar bone resorption was observed on the compression side, and bone formation was observed on the tension side.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 81300849), Beijing Natural Science Foundation (Grant No. 7132067), Beijing Municipal Administration of Hospitals Incubating Program (Code: PX2018054), and Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China (2013).

References

  1. Brierley CA, DiBiase A, Sandler PJ. Early Class II treatment. Aust Dent J 2017;62 Suppl 1:4-10. https://doi.org/10.1111/adj.12478
  2. Ngan P, Moon W. Evolution of Class III treatment in orthodontics. Am J Orthod Dentofacial Orthop 2015;148:22-36. https://doi.org/10.1016/j.ajodo.2015.04.012
  3. Fleming PS. Timing orthodontic treatment: early or late? Aust Dent J 2017;62 Suppl 1:11-9. https://doi.org/10.1111/adj.12474
  4. Dalaie K, Badiee M, Behnaz M, Kavousinejad S. Effect of orthodontic forces on root length of immature mandibular second premolars: a split-mouth randomized clinical trial. Dental Press J Orthod 2021;26:e2119355. https://doi.org/10.1590/2177-6709.26.5.e2119355.oar
  5. Bauss O, Sadat-Khonsari R, Engelke W, Kahl-Nieke B. Results of transplanting developing third molars as part of orthodontics space management. Part 2: results following the orthodontic treatment of transplanted developing third molars in cases of aplasia and premature loss of teeth with atrophy of the alveolar process. J Orofac Orthop 2003;64:40-7. https://doi.org/10.1007/s00056-003-0132-y
  6. Harris EF, Baker WC. Loss of root length and crestal bone height before and during treatment in adolescent and adult orthodontic patients. Am J Orthod Dentofacial Orthop 1990;98:463-9. https://doi.org/10.1016/s0889-5406(05)81656-7
  7. Hendrix I, Carels C, Kuijpers-Jagtman AM, Van 'T Hof M. A radiographic study of posterior apical root resorption in orthodontic patients. Am J Orthod Dentofacial Orthop 1994;105:345-9. https://doi.org/10.1016/S0889-5406(94)70128-8
  8. Ren Y, Maltha JC, Liem RS, Stokroos I, KuijpersJagtman AM. Age-dependent external root resorption during tooth movement in rats. Acta Odontol Scand 2008;66:93-8. https://doi.org/10.1080/00016350801982522
  9. Zhao L, Matsumoto Y, Ono T, Iseki S. Effects of mechanical force application on the developing root apex in rat maxillary molars. Arch Oral Biol 2019;101:64-76. https://doi.org/10.1016/j.archoralbio.2019.03.010
  10. An J, Li Y, Liu Z, Wang R, Zhang B. A microCT study of microstructure change of alveolar bone during orthodontic tooth movement under different force magnitudes in rats. Exp Ther Med 2017;13:1793-8. https://doi.org/10.3892/etm.2017.4186
  11. Swain MV, Xue J. State of the art of MicroCT applications in dental research. Int J Oral Sci 2009;1:177-88. https://doi.org/10.4248/ijos09031
  12. Shintcovsk RL, Knop L, Tanaka OM, Maruo H. Nicotine effect on bone remodeling during orthodontic tooth movement: histological study in rats. Dental Press J Orthod 2014;19:96-107. https://doi.org/10.1590/2176-9451.19.2.096-107.oar
  13. Kong X, Cao M, Ye R, Ding Y. Orthodontic force accelerates dentine mineralization during tooth development in juvenile rats. Tohoku J Exp Med 2010;221:265-70. https://doi.org/10.1620/tjem.221.265
  14. Leong NL, Hurng JM, Djomehri SI, Gansky SA, Ryder MI, Ho SP. Age-related adaptation of bonePDL-tooth complex: Rattus-Norvegicus as a model system. PLoS One 2012;7:e35980. https://doi.org/10.1371/journal.pone.0035980
  15. Li X, Xu J, Yin Y, Liu T, Chang L, He S, et al. Notch signaling inhibition protects against root resorption in experimental immature tooth movement in rats. Am J Orthod Dentofacial Orthop 2021;159:426-34. e5. https://doi.org/10.1016/j.ajodo.2020.05.012
  16. Owens PD. Ultrastructure of Hertwig's epithelial root sheath during early root development in premolar teeth in dogs. Arch Oral Biol 1978;23:91-104. https://doi.org/10.1016/0003-9969(78)90145-0
  17. Xu L, Tang L, Jin F, Liu XH, Yu JH, Wu JJ, et al. The apical region of developing tooth root constitutes a complex and maintains the ability to generate root and periodontium-like tissues. J Periodontal Res 2009;44:275-82. https://doi.org/10.1111/j.1600-0765.2008.01129.x
  18. Nakasone N, Yoshie H. Occlusion regulates toothroot elongation during root development in rat molars. Eur J Oral Sci 2011;119:418-26. https://doi.org/10.1111/j.1600-0722.2011.00856.x
  19. Motokawa M, Terao A, Karadeniz EI, Kaku M, Kawata T, Matsuda Y, et al. Effects of long-term occlusal hypofunction and its recovery on the morphogenesis of molar roots and the periodontium in rats. Angle Orthod 2013;83:597-604. https://doi.org/10.2319/081812-661.1
  20. Cao D, Shao B, Izadikhah I, Xie L, Wu B, Li H, et al. Root dilaceration in maxillary impacted canines and adjacent teeth: a retrospective analysis of the difference between buccal and palatal impaction. Am J Orthod Dentofacial Orthop 2021;159:167-74. https://doi.org/10.1016/j.ajodo.2019.12.019
  21. Pavlidis D, Daratsianos N, Jager A. Treatment of an impacted dilacerated maxillary central incisor. Am J Orthod Dentofacial Orthop 2011;139:378-87. https://doi.org/10.1016/j.ajodo.2009.10.040
  22. Walia PS, Rohilla AK, Choudhary S, Kaur R. Review of dilaceration of maxillary central incisor: a mutidisciplinary challenge. Int J Clin Pediatr Dent 2016;9:90-8. https://doi.org/10.5005/jp-journals-10005-1341
  23. Winter BU, Stenvik A, Vandevska-Radunovic V. Dynamics of orthodontic root resorption and repair in human premolars: a light microscopy study. Eur J Orthod 2009;31:346-51. https://doi.org/10.1093/ejo/cjp020
  24. Reitan K. Initial tissue behavior during apical root resorption. Angle Orthod 1974;44:68-82. https://doi.org/10.1043/0003-3219(1974)044%3C0068:itbdar%3E2.0.co;2
  25. Star H, Chandrasekaran D, Miletich I, Tucker AS. Impact of hypofunctional occlusion on upper and lower molars after cessation of root development in adult mice. Eur J Orthod 2017;39:243-50. https://doi.org/10.1093/ejo/cjw051
  26. Wan J, Zhou S, Wang J, Zhang R. Three-dimensional analysis of root changes after orthodontic treatment for patients at different stages of root development. Am J Orthod Dentofacial Orthop 2023;163:60-7. https://doi.org/10.1016/j.ajodo.2021.08.025
  27. Mao Y, Wang L, Zhu Y, Liu Y, Dai H, Zhou J, et al. Tension force-induced bone formation in orthodontic tooth movement via modulation of the GSK-3β/β-catenin signaling pathway. J Mol Histol 2018;49:75-84. https://doi.org/10.1007/s10735-017-9748-x
  28. Ru N, Liu SS, Zhuang L, Li S, Bai Y. In vivo microcomputed tomography evaluation of rat alveolar bone and root resorption during orthodontic tooth movement. Angle Orthod 2013;83:402-9. https://doi.org/10.2319/031312-219.1
  29. Li X, Li M, Lu J, Hu Y, Cui L, Zhang D, et al. Age-related effects on osteoclastic activities after orthodontic tooth movement. Bone Joint Res 2016;5:492-9. https://doi.org/10.1302/2046-3758.510.bjr-2016-0004.r2
  30. Yoshida T, Yamaguchi M, Utsunomiya T, Kato M, Arai Y, Kaneda T, et al. Low-energy laser irradiation accelerates the velocity of tooth movement via stimulation of the alveolar bone remodeling. Orthod Craniofac Res 2009;12:289-98. https://doi.org/10.1111/j.1601-6343.2009.01464.x
  31. Kobayashi Y, Hashimoto F, Miyamoto H, Kanaoka K, Miyazaki-Kawashita Y, Nakashima T, et al. Forceinduced osteoclast apoptosis in vivo is accompanied by elevation in transforming growth factor beta and osteoprotegerin expression. J Bone Miner Res 2000;15:1924-34. https://doi.org/10.1359/jbmr.2000.15.10.1924
  32. Qin J, Hua Y. Effects of hydrogen sulfide on the expression of alkaline phosphatase, osteocalcin and collagen type I in human periodontal ligament cells induced by tension force stimulation. Mol Med Rep 2016;14:3871-7. https://doi.org/10.3892/mmr.2016.5680
  33. Zhang R, Wan J, Wang H. Mechanical strain triggers differentiation of dental mesenchymal stem cells by activating osteogenesis-specific biomarkers expression. Am J Transl Res 2019;11:233-44. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357315/
  34. Bica C, Brezeanu L, Bica D. A finite element model of force distribution from tooth movement. Metal Int 2013;18:12-5. https://www.proquest.com/openview/6e242fcd5829fba2e89912e9b225893d/1?pqorigsite=gscholar&cbl=886383
  35. Misawa Y, Kageyama T, Moriyama K, Kurihara S, Yagasaki H, Deguchi T, et al. Effect of age on alveolar bone turnover adjacent to maxillary molar roots in male rats: a histomorphometric study. Arch Oral Biol 2007;52:44-50. https://doi.org/10.1016/j.archoralbio.2006.06.012
  36. Gonzales C, Hotokezaka H, Yoshimatsu M, Yozgatian JH, Darendeliler MA, Yoshida N. Force magnitude and duration effects on amount of tooth movement and root resorption in the rat molar. Angle Orthod 2008;78:502-9. https://doi.org/10.2319/052007-240.1
  37. Kraiwattanapong K, Samruajbenjakun B. Tissue response resulting from different force magnitudes combined with corticotomy in rats. Angle Orthod 2019;89:797-803. https://doi.org/10.2319/090418-645.1
  38. Li C, Chung CJ, Hwang CJ, Lee KJ. Local injection of RANKL facilitates tooth movement and alveolar bone remodelling. Oral Dis 2019;25:550-60. https://doi.org/10.1111/odi.13013
  39. Nakano T, Hotokezaka H, Hashimoto M, Sirisoontorn I, Arita K, Kurohama T, et al. Effects of different types of tooth movement and force magnitudes on the amount of tooth movement and root resorption in rats. Angle Orthod 2014;84:1079-85. https://doi.org/10.2319/121913-929.1
  40. Marcantonio CC, Nogueira AVB, Leguizamon NDP, de Molon RS, Lopes MES, Silva RCL, et al. Effects of obesity on periodontal tissue remodeling during orthodontic movement. Am J Orthod Dentofacial Orthop 2021;159:480-90. https://doi.org/10.1016/j.ajodo.2019.12.025