• Title/Summary/Keyword: medical mechanics

Search Result 86, Processing Time 0.065 seconds

Sports-related Overuse Injuries: Elbow joint (스포츠와 연관된 과사용 증후군: 주관절)

  • Oh, Jeong-Hwan;Keum, Jung-Sup;Park, Jin-Young
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.7 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • Repetitive overhead throwing exerts significant mechanical stress on the elbow joint. Pitching in baseball, serving in tennis, spiking in volleyball, passing in American football and launching in javelin-throwing can all produce elbow pathology by forceful valgus stress, with medial stretching, lateral compression and posterior impingement. This stress can lead to developmental anatomic changes in the young thrower. Asymptomatic pathology in the shoulder and elbow joint is prevalent and, with overuse, can progress to disabling injury. Joint injury occurs as a result of the body's inability to properly coordinate motion segments during the pitching delivery, leading to further structural damage. The implications of acute and overuse injuries and the possibility of permanent damage should be understood by parents, coaches and the athletes. Proper understanding of the intrinsic and extrinsic risk factors that could lead to elbow injuries is thus required. Measures to prevent elbow injuries should include proper coaching, warm-up, medical expertise and protective gear. Injury prevention and rehabilitation should center on optimizing pitching mechanics, core strength, scapular control, and joint range of motion.

  • PDF

Theoretical Characterization of Binding Mode of Organosilicon Inhibitor with p38: Docking, MD Simulation and MM/GBSA Free Energy Approach

  • Gadhe, Changdev G.;Balupuri, Anand;Kothandan, Gugan;Cho, Seung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2494-2504
    • /
    • 2014
  • P38 mitogen activated protein (MAP) kinase is an important anti-inflammatory drug target, which can be activated by responding to various stimuli such as stress and immune response. Based on the conformation of the conserved DFG loop (in or out), binding inhibitors are termed as type-I and II. Type-I inhibitors are ATP competitive, whereas type-II inhibitors bind in DFG-out conformation of allosteric pocket. It remains unclear that how these allosteric inhibitors stabilize the DFG-out conformation and interact. Organosilicon compounds provide unusual opportunity to enhance potency and diversity of drug molecules due to their low toxicity. However, very few examples have been reported to utilize this property. In this regard, we performed docking of an inhibitor (BIRB) and its silicon analog (Si-BIRB) in an allosteric binding pocket of p38. Further, molecular dynamics (MD) simulations were performed to study the dynamic behavior of the simulated complexes. The difference in the biological activity and mechanism of action of the simulated inhibitors could be explained based on the molecular mechanics/generalized Born surface area (MM/GBSA) binding free energy per residue decomposition. MM/GBSA showed that biological activities were related with calculated binding free energy of inhibitors. Analyses of the per-residue decomposed energy indicated that van der Waals and non-polar interactions were predominant in the ligand-protein interactions. Further, crucial residues identified for hydrogen bond, salt bridge and hydrophobic interactions were Tyr35, Lys53, Glu71, Leu74, Leu75, Ile84, Met109, Leu167, Asp168 and Phe169. Our results indicate that stronger hydrophobic interaction of Si-BIRB with the binding site residues could be responsible for its greater binding affinity compared with BIRB.

Magneto-Mechatronics : A New Approach to Sensors and Actuators for Next-Generation Biomedical and Rehabilitation Devices (자기 메카트로닉스 : 차세대 의공학 및 재활 기기 개발을 위한 센서와 액추에이터의 새로운 접근방법)

  • Yu, Chang Ho;Kim, Sung Hoon
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Magnetic sensors and actuators have been widely used in industry and medical fields. Integrated systems based on sensors and actuators are defined as mechatronics that is the general combination of mechanics and electronics. Recently, magnetic wireless sensors and actuators have been developed and used at a systematic level. In particular, their mechanisms depend on magnetic, such as magnetic material and physical phenomena. However, their research boundary has not been clear. Researchers talk of magnetic micro-robots, magnetic actuators and sensors. Therefore, a new and correct definition is required. In this study, we introduce the advanced and extended concept of mechatronics, which is a magneto-mechantronics for biomedical and rehabilitation. Among various applications, we focused on wireless pump and sensing system for blood vessel rehabilitation and local motion capture, respectively.

Cause of Metatarsalgia (중족통의 원인)

  • Gwak, Heui Chul;Ha, Dong Jun
    • Journal of Korean Foot and Ankle Society
    • /
    • v.21 no.3
    • /
    • pp.79-82
    • /
    • 2017
  • Metatarsalgia is one of the most common causes of patients complaining of pain in their feet. This pain is the plantar forefoot, including the second to fourth metatarsal heads and arises from either mechanical or iatrogenic causes. On the other hand, it is frequently accompanied by a deformity of the toes as well as of the first and fifth rays. The pain has a variety of causes, and sometimes the cause is difficult to distinguish. The variability of possible causative factors necessitates an individualized approach to treatment. To determine these causes, this paper presents an overview of the gait mechanics, plantar pressure, and the classification according to the etiology.

Haptic Simulation with s-FEM (s-FEM 을 이용한 햅틱 시뮬레이션)

  • Jun, Seong-Ki;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.780-785
    • /
    • 2007
  • Accurate and fast haptic simulations of deformable objects are desired in many applications such as medical virtual reality. In haptic interactions with a coarse model, the number of nodes near the haptic interaction region is too few to generate detailed deformation. Thus, local refinement techniques need to be developed. Many approaches have employed purely geometric subdivision schemes, but they are not proper in describing the deformation behavior of deformable objects. This paper presents a continuum mechanics-based finite element adaptive method to perform haptic interaction with a deformable object. This method superimposes a local fine mesh upon a global coarse model, which consists of the entire deformable object. The local mesh and the global mesh are coupled by the s-version finite element method (s-FEM), which is generally used to enhance accurate solutions near the target points even more. The s-FEM can demonstrate a reliable deformation to users in real-time.

  • PDF

Research on Residual Strain of Arterial Cross-Section (동맥 전단부에 분포된 원주 변형율에 대한 잔유 변형율의 영향)

  • Whang, Min-Cheol;Shin, Jung-Woog
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.151-153
    • /
    • 1995
  • Residual strain of artery is studied. There has been experimental evidence that residual strain exists in artery. When ring of artery is longitudinally cut, it is opened. Since strain has been determined without considering residual strain, the existence of residual strain is meaningful in mechanics of arterial wall. Intimal strain concentration is considered to be reduced with both account of residual strain and strain determined by loading. However, it is lack of experimental research. Therefore, this study experimentally attempts to quantify the effect of residual strain on circumferential strain which is determined under the assumption of zero strain with zero pressure.

  • PDF

Visualization and Measurement of Fluids with Real-time Holographic Interferometry (실시간 홀로그래픽 간섭법을 이용한 유체의 가시화)

  • Eom, Chul;Kang, Young-June;Kim, Dong-Woo;Ryu, Weon-Jae;An, Jung-Keun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.539-544
    • /
    • 2001
  • The holographic measurement techniques can be applied to various industrial fields such as automobile, airplane, construction, electronics, medical, mechanics and physics. The visualization of fluids is very important in aerodynamics, heat transfer and stress analysis. There are classically optical methods such as shadowgraph, schlieren method, and Mach-Zehnder interferometry for visualizing the fluid flow phenomena. But, it is difficult to understand the continuous state of fluids well in those methods. In this study, the real-time holographic interferometer with high-speed camera is applied to the flow visualization. In addition, collimated laser beam and rotating wedge are used for recording and formation of carrier fringes, respectively.

  • PDF

The Development of Micro Wiring System for Micro Active Endoscope (박막 공정을 이용한 초소형 내시경의 MicroWiring System의 개발)

  • Jung, Seok;Chang, Jun-Keun;Han, Dong-Chul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.362-365
    • /
    • 1997
  • In the field of Micro-Mechanics, it has been known diffcult to integrate the micro-machine with sensor and source line for the conventional copper line cnanot be used in compact and small size. We developed a system to make thethin copper film as a connect line on the poyurethane pipe (2mm in diameter) by the evaporation technique. This system consists of an evaporation chamber two long branches, substrate hoider and a Linear-Rotary motion feed feedthrough. The results showed that thin copper film coated polyurethanc pipe could be applied th the small medical devices such as the micro active endoscope.

  • PDF

Haptic Simulation for Deformable Object with s-FEM (s-FEM을 이용한 변형체 햅틱 시뮬레이션)

  • Jun Seong-Ki;Choi Jin-Bok;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.373-380
    • /
    • 2006
  • Accurate and fast haptic simulations of deformable objects are desired in many applications such as medical virtual reality. In haptic interactions with a coarse model, the number of nodes near the haptic interaction region is too few to generate detailed deformation. Thus, local refinement techniques need to be developed. Many approaches have employed purely geometric subdivision schemes, but they are not proper in describing the deformation behavior of deformable objects. This paper presents a continuum mechanics-based finite element adaptive method to perform haptic interaction 'with a deformable object. This method superimposes a local fine mesh upon a global coarse model, which consists of the entire deformable object. The local mesh and the global mesh are coupled by the s-version finite element method (s-FEM), which is generally used to enhance accurate solutions near the target points even more. The s-FEM can demonstrate a reliable deformation to users in real-time.

  • PDF

3 차원 주화성 모델 개발을 통한 흡착형 세포의 동적특성 연구

  • Song, Ji-Hwan;Kim, Dong-Choul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1638-1642
    • /
    • 2008
  • Cell migration is one of the essential mechanisms responsible for complex biological processes. Intensive researches have begun to elucidate the mechanisms and search intriguing conditions for efficient control of cell migration. One general mechanism which is widely applicable for cells including neutrophil, Escherichia coli and endothelial cell is chemotaxis. Especially, understanding the chemotactic mechanics of cell crawling has important implications for various medical and biological applications. The single cell study for chemotaxis has an advantage over studies with the population of cells in providing a clearer observation of cell migration, which leads to more accurate assessments of chemotaxis. In this paper, we propose a three-dimensional model considering a single crawling cell to study its chemotaxis. The semi-implicit Fourier spectral method is applied for high efficiency and numerical stability. The simulation results reveal rich dynamics of cell.

  • PDF