• Title/Summary/Keyword: medical images

Search Result 2,759, Processing Time 0.032 seconds

Blood-Brain Barrier Experiments with Clinical Magnetic Resonance Imaging and an Immunohistochemical Study

  • Park, Jun-Woo;Kim, Hak-Jin;Song, Geun-Sung;Han, Hyung-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.3
    • /
    • pp.203-209
    • /
    • 2010
  • Objective : The purpose of study was to evaluate the feasibility of brain magnetic resonance (MR) images of the rat obtained using a 1.5T MR machine in several blood-brain barrier (BBB) experiments. Methods : Male Sprague-Dawley rats were used. MR images were obtained using a clinical 1.5T MR machine. A microcatheter was introduced via the femoral artery to the carotid artery. Normal saline (group 1, n = 4), clotted autologous blood (group 2, n = 4), triolein emulsion (group 3, n = 4), and oleic acid emulsion (group 4, n = 4) were infused into the carotid artery through a microcatheter. Conventional and diffusion-weighted images, the apparent coefficient map, perfusion-weighted images, and contrast-enhanced MR images were obtained. Brain tissue was obtained and triphenyltetrazolium chloride (TTC) staining was performed in group 2. Fluorescein isothiocyanate (FITC)-labeled dextran images and endothelial barrier antigen (EBA) studies were performed in group 4. Results : The MR images in group 1 were of good quality. The MR images in group 2 revealed typical findings of acute cerebral infarction. Perfusion defects were noted on the perfusion-weighted images. The MR images in group 3 showed vasogenic edema and contrast enhancement, representing vascular damage. The rats in group 4 had vasogenic edema on the MR images and leakage of dextran on the FITC-labeled dextran image, representing increased vascular permeability. The immune reaction was decreased on the EBA study. Conclusion : Clinical 1.5T MR images using a rat depicted many informative results in the present study. These results can be used in further researches of the BBB using combined clinical MR machines and immunohistochemical examinations.

Implement of Integration Compression Environment System Compressing Medical Images (의료영상 압축을 위한 통합압축환경시스템 구현)

  • 추은형;박무훈
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.1
    • /
    • pp.142-148
    • /
    • 2003
  • We compress medical images in order to solve problems both of request of storage mediums and of a low network speed. In this paper, integration compression environment has been developed for unity of various compression methods. Various compression methods that are implemented by integration compression environment, RLC, Lossless JPEG, and JPEG, comply with the DICOM 3.0. A compression method using DWT is implemented at it. And a unit method of Lossless compression method and lossy compression method is designed to improve images quality and to progress compression ratio. Diverse medical images can be compressed by each compression method. And integration compression environment is operated together database so that information of medical images is administered.

Development and Evaluation of D-Attention Unet Model Using 3D and Continuous Visual Context for Needle Detection in Continuous Ultrasound Images (연속 초음파영상에서의 바늘 검출을 위한 3D와 연속 영상문맥을 활용한 D-Attention Unet 모델 개발 및 평가)

  • Lee, So Hee;Kim, Jong Un;Lee, Su Yeol;Ryu, Jeong Won;Choi, Dong Hyuk;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.195-202
    • /
    • 2020
  • Needle detection in ultrasound images is sometimes difficult due to obstruction of fat tissues. Accurate needle detection using continuous ultrasound (CUS) images is a vital stage of treatment planning for tissue biopsy and brachytherapy. The main goal of the study is classified into two categories. First, new detection model, i.e. D-Attention Unet, is developed by combining the context information of 3D medical data and CUS images. Second, the D-Attention Unet model was compared with other models to verify its usefulness for needle detection in continuous ultrasound images. The continuous needle images taken with ultrasonic waves were converted into still images for dataset to evaluate the performance of the D-Attention Unet. The dataset was used for training and testing. Based on the results, the proposed D-Attention Unet model showed the better performance than other 3 models (Unet, D-Unet and Attention Unet), with Dice Similarity Coefficient (DSC), Recall and Precision at 71.9%, 70.6% and 73.7%, respectively. In conclusion, the D-Attention Unet model provides accurate needle detection for US-guided biopsy or brachytherapy, facilitating the clinical workflow. Especially, this kind of research is enthusiastically being performed on how to add image processing techniques to learning techniques. Thus, the proposed method is applied in this manner, it will be more effective technique than before.

Radiomics-based Biomarker Validation Study for Region Classification in 2D Prostate Cross-sectional Images (2D 전립선 단면 영상에서 영역 분류를 위한 라디오믹스 기반 바이오마커 검증 연구)

  • Jun Young, Park;Young Jae, Kim;Jisup, Kim;Kwang Gi, Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.25-32
    • /
    • 2023
  • Recognizing the size and location of prostate cancer is critical for prostate cancer diagnosis, treatment, and predicting prognosis. This paper proposes a model to classify the tumor region and normal tissue with cross-sectional visual images of prostatectomy tissue. We used specimen images of 44 prostate cancer patients who received prostatectomy at Gachon University Gil Hospital. A total of 289 prostate slice images consist of 200 slices including tumor region and 89 slices not including tumor region. Images were divided based on the presence or absence of tumor, and a total of 93 features from each slice image were extracted using Radiomics: 18 first order, 24 GLCM, 16 GLRLM, 16 GLSZM, 5 NGTDM, and 14 GLDM. We compared feature selection techniques such as LASSO, ANOVA, SFS, Ridge and RF, LR, SVM classifiers for the model's high performances. We evaluated the model's performance with AUC of the ROC curve. The results showed that the combination of feature selection techniques LASSO, Ridge, and classifier RF could be best with an AUC of 0.99±0.005.

Diagnostic performance of stitched and non-stitched cross-sectional cone-beam computed tomography images of a non-displaced fracture of ovine mandibular bone

  • Farzane Ostovarrad;Sadra Masali Markiyeh;Zahra Dalili Kajan
    • Imaging Science in Dentistry
    • /
    • v.53 no.4
    • /
    • pp.375-381
    • /
    • 2023
  • Purpose: This study assessed the diagnostic performance of stitched and non-stitched cross-sectional cone-beam computed tomography (CBCT) images of non-displaced ovine mandibular fractures. Materials and Methods: In this ex vivo study, non-displaced fractures were artificially created in 10 ovine mandibles (20 hemi-mandibles) using a hammer. The control group comprised 8 hemi-mandibles. The non-displaced fracture lines were oblique or vertical, <0.5 mm wide, 10-20 mm long, and only in the buccal or lingual cortex. Fracture lines in the ramus and posterior mandible were created to be at the interface or borders of the 2 stitched images. CBCT images were obtained from the specimens with an 80 mm×80 mm field of view before and after fracture induction. OnDemand software (Cybermed, Seoul, Korea) was used for stitching the CBCT images. Four observers evaluated 56 (28 stitched and 28 non-stitched) images to detect fracture lines. The diagnostic performance of stitched and non-stitched images was assessed by calculating the area under the receiver operating characteristic curve (AUC). Sensitivity and specificity values were also calculated (alpha=0.05). Results: The AUC was calculated to be 0.862 and 0.825 for the stitched and non-stitched images, respectively (P=0.747). The sensitivity and specificity were 90% and 75% for the non-stitched images and 85% and 87% for the stitched images, respectively. The inter-observer reliability was shown by a Fleiss kappa coefficient of 0.79, indicating good agreement. Conclusion: No significant difference was found in the diagnostic performance of stitched and non-stitched cross-sectional CBCT images of non-displaced fractures of the ovine mandible.

Various Image Compression using Medical Image and Analysis for Compression Ratio (의료영상을 이용한 다양한 압축방법의 구현 및 압축율 비교.분석)

  • 추은형;김현규;박무훈
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.185-188
    • /
    • 2002
  • With improved network system and development of computer technology, a lot of hospitals are equipping PACS that deals with process and transmission of the medical images. Owing to equipment of PACS the problems on transmission and storage of the medical images were treated. The way to solve the problems is to use various image processing techniques and compression methods This paper describes RLC in lossless image compression method, JPEG using DCT in loss image compression applied to medical images as way implementing DICOM standard. Now the medical images were compressed with Wavelet transform method have been taken advantage of image process. And compression rate of each compression methods was analyzed.

  • PDF

A comparative study of metal artifacts from common metal orthodontic brackets in magnetic resonance imaging

  • Kajan, Zahra Dalili;Khademi, Jalil;Alizadeh, Ahmad;Hemmaty, Yasamin Babaei;Roushan, Zahra Atrkar
    • Imaging Science in Dentistry
    • /
    • v.45 no.3
    • /
    • pp.159-168
    • /
    • 2015
  • Purpose: This study was performed to compare the metal artifacts from common metal orthodontic brackets in magnetic resonance imaging. Material and Methods: A dry mandible with 12 intact premolars was prepared, and was scanned ten times with various types of brackets: American, 3M, Dentaurum, and Masel orthodontic brackets were used, together with either stainless steel (SS) or nickel titanium (NiTi) wires. Subsequently, three different sequences of coronal and axial images were obtained: spin-echo $T_1$-weighted images, fast spin-echo $T_2$-weighted images, and fluid-attenuated inversion recovery images. In each sequence, the two sequential axial and coronal images with the largest signal-void area were selected. The largest diameters of the signal voids in the direction of the X-, Y-, and Z-axes were then measured twice. Finally, the mean linear values associated with different orthodontic brackets were analyzed using one-way analysis of variation, and the results were compared using the independent t-test to assess whether the use of SS or NiTi wires had a significant effect on the images. Results: Statistically significant differences were only observed along the Z-axis among the four different brands of orthodontic brackets with SS wires. A statistically significant difference was observed along all axes among the brackets with NiTi wires. A statistically significant difference was found only along the Z-axis between nickel-free and nickel-containing brackets. Conclusion: With respect to all axes, the 3M bracket was associated with smaller signal-void areas. Overall, the 3M and Dentaurum brackets with NiTi wires induced smaller artifacts along all axes than those with SS wires.

A study on image registration and fusion of MRI and SPECT/PET (뇌의 단일 광자 방출 전산화 단층촬영 영상, 양전자 방출 단층 촬영 영상 그리고 핵자기공명 영상의 융합과 등록에 관한 연구)

  • Joo, Ra-Hyung;Choi, Yong;Kwon, Soo-Il;Heo, Soo-Jin
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.47-53
    • /
    • 1998
  • Nuclear Medicine Images have comparatively poor spatial resolution, making it difficult to relate the functional information which they contain to precise anatomical structures. Anatomical structures useful in the interpretation of SPECT /PET Images were radiolabelled. PET/SPECT Images Provide functional information, whereas MRI mainly demonstrate morphology and anatomical. Fusion or Image Registration improves the information obtained by correlating images from various modalities. Brain Scan were studied on one or more occations using MRI and SPECT. The data were aligned using a point pair methods and surface matching. SPECT and MR Images was tested using a three dimensional water fillable Hoffman Brain Phantom with small marker and PET and MR Image was tested using a patient data. Registration of SPECT and MR Images is feasible and allows more accurate anatomic assessment of sites of abnormal uptake in radiolabeled studies. Point based registration was accurate and easily implemented three dimensional registration of multimodality data set for fusion of clinical anatomic and functional imaging modalities. Accuracy of a surface matching algorithm and homologous feature pair matching for three dimensional image registration of Single Photon Emission Computed Tomography Emission Computed Tomography (SPECT), Positron Emission Tomography (PET) and Magnetic Resonance Images(MRD was tested using a three dimensional water fill able brain phantom and Patients data. Transformation parameter for translation and scaling were determined by homologous feature point pair to match each SPECT and PET scan with MR images.

  • PDF

Evaluation of Modified Turbo Spin Echo Technique Compared with Double Inversion Recovery Technique in Acquisition of Black Blood Brain Vessel Image

  • Choi, Kwan-Woo;Lee, Ho-Beom;Na, Sa-Ra;Son, Soon-Yong
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.148-152
    • /
    • 2016
  • The main goal was to evaluate effectiveness of a modified TSE sequence compared with DIR (double inversion recovery) sequence in acquisition of fast flow brain vessel images using signal void effect. 32 healthy volunteers (10 men and 22 women; mean age of 31 years; ranging between 28-43 years) who underwent black blood DIR sequence (group A) and the modified TSE sequence (group B) were enrolled in our study. Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) of the internal carotid arteries' lumen were compared in T1 and T2 weighted images for both group A and B. The images obtained from group B showed lower SNR values in internal carotid artery than the group A in both of the T1 and T2 weighted images (11.49% and 13.66% respectively). While the CNR values were higher in the group B than the group A in both of the T1 and T2 weighted images (8.69% and 7.55 % respectively). The qualitative score of all categories were not significantly different between the two groups. Furthermore approximately 49% of the total scan time was reduced from group B. Our study is to shorten the scanning time and minimize the inconveniences of the patients in acquisition of the black blood images of brain by using the signal void effect in the modified TSE technique while keeping the diagnostic value of the test.

Side lobe free medical ultrasonic imaging with application to assessing side lobe suppression filter

  • Jeong, Mok Kun;Kwon, Sung Jae
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.355-364
    • /
    • 2018
  • When focusing using an ultrasonic transducer array, a main lobe is formed in the focal region of an ultrasound field, but side lobes also arise around the focal region due to the leakage. Since the side lobes cannot be completely eliminated in the focusing process, they are responsible for subsequent ultrasound image quality degradation. To improve ultrasound image quality, a signal processing strategy to reduce side lobes is definitely in demand. To this end, quantitative determination of main and side lobes is necessary. We propose a theoretically and actually error-free method of exactly discriminating and separately computing the main lobe and side lobe parts in ultrasound image by computer simulation. We refer to images constructed using the main and side lobe signals as the main and side lobe images, respectively. Since the main and side lobe images exactly represent their main and side lobe components, respectively, they can be used to evaluate ultrasound image quality. Defining the average brightness of the main and side lobe images, the conventional to side lobe image ratio, and the main to side lobe image ratio as image quality metrics, we can evaluate image characteristics in speckle images. The proposed method is also applied in assessing the performance of side lobe suppression filtering. We show that the proposed method may greatly aid in the evaluation of medical ultrasonic images using computer simulations, albeit lacking the use of actual experimental data.