• 제목/요약/키워드: medical image segmentation

검색결과 259건 처리시간 0.025초

의료명상(MDCT)을 이용한 간 동맥의 영역 분할에 관한 영상처리 (A Study on an Image Processing for Segmentation of Liver Arteriography Using Medical Image(MDCT))

  • 최승권;조용환;이병록
    • 한국콘텐츠학회논문지
    • /
    • 제5권5호
    • /
    • pp.305-305
    • /
    • 2005
  • 현대사회에 있어서 질병은 매우 다양하게 발견되고 있다. 또한 한번 발병하면 아니면 적절한 검진시기를 놓쳐 돌이킬 수 없는 상황을 접하게 되는 경우가 종종 있다. 사회가 발전하면서 과도한 비즈니스와 음주 흡연 등으로 우리의 간은 매우 피곤한 상태에 놓이게 되며 질병 발생율도 매우 높다. 여러 질병 중 특히 간에 관련된 질병은 회복이 불가하여 장기이식수술에 의존하는 편이다. 이와 관련하여 본 연구는 MDCT로 얻어진 영상을 3차원 영상 기법으로 간의 형상을 렌더링 하여 체적을 구하고 간 이식 수술시 혈관과의 분리 작업을 통해 절개 라인을 결정할 수 있도록 미리 시물레이션 할 수 있는 영상처리 기법을 개발하고자 간 영역 자동 추출 알고리즘을 적용하여 시물레이션 한 결과 수술을 용이하게 집도할 수 있도록 새로운 장을 열게 되었다.

척추 자기 공명 영상에서 특징 벡터에 기반 한 디스크 질환의 자동 인식 (Automatic Disk Disease Recognition based on Feature Vector in T-L Spine Magnetic Resonance Image)

  • 홍재성;이성기
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권3호
    • /
    • pp.233-242
    • /
    • 1998
  • 본 논문에서는 척추 자기공명영상에 대하여 자동적으로 질환에 관련된 특징 벡터들을 추출하고 디스크 질환을 인식하는 방법을 제안하였다. 척추 자기공명영상은 절단면에 따라 시상 단면 영상과 축 단면 영상으로 나누어 진다. 두가지 영상에서 질환에 관련된 특징 벡터를 추출하여 질환의 유무와 종류를 인식하는데 사용하였다. 시상 단면 영상에서는 각 부위에 해당하는 영역의 동질성을 이용하여 디스크 부분을 추출한 후 영역레이블링 과정을 통해 전체적인 크기와 돌출 정도를 구해서 질환을 나타내는 특징으로 이용하였다. 축 단면 영상에서는 템플릿 정합을 이용하여 디스크 영역을 찾고 경계선을 추출하기 위해 세기와 방향성을 고려한 연산자를 사용했다. 경계선의 모양을 분석해서 디스크 돌출 정도에 관한 수치를 얻었다. 이렇게 얻은 특징벡터들은 유사한 질환을 가진 환자의 영상을 찾기 위한 의료 영상 데이터 베이스에 사용될 수 있으며, 많은 양의 영상에서 질환이 나타나 있는 것을 일차적으로 선별하여 전문의에게 제공하는데 이용될 수 있을 것으로 예상한다.

  • PDF

3차원 연골 광간섭 단층촬영 이미지들에 대한 영상 재구성 알고리듬 연구 (Study on an Image Reconstruction Algorithm for 3D Cartilage OCT Images (A Preliminary Study))

  • 호동수;김이화;김용민;김법민
    • 한국의학물리학회지:의학물리
    • /
    • 제20권2호
    • /
    • pp.62-71
    • /
    • 2009
  • 최근에 광간섭 단층촬영은 생물학적 조직을 비 침습적으로 이미지를 얻는데 많이 사용되고 있다. 그러나, 광간섭 단층촬영은 노이즈 때문에 해석하는데 아직까지는 어려움을 갖고 있다. 본 논문에서는 인체와 토끼의 연골 이미지들의 이미지에서 잡음을 제거하는 다양한 영상처리 기술을 적용해 보았다. 또한 광간섭 단층촬영으로 얻은 이미지들을 영상 분할 방법을 통해 얻고자 하는 부위를 구별 하였으며 대부분의 이미지들이 영상분할 알고리즘에 적합함을 볼 수 있었다. 그리고, 광간섭 단층영상에 적합한 영상분할 방법을 선택한 후 영상을 재구성 하였다. 광간섭 단층촬영은 작은 깊이와 거리에 제한을 가지고 있기 때문에 영상처리장치에 단점을 가지고 있다. 광간섭 이미지가 매우 작은 공간에서 이루어 짐으로 같은 지역의 영상을 재구성 하기는 어려운 점이 있다. 그래서, 광간섭 단층영상 재구성을 할 때 좋은 매칭 알고리즘 방법이 필요하다. 본 논문에서는 챔퍼 매칭 알고리즘을 사용하여 재구성 하였다. 본 연구에서는 OCT 연골 이미지를 얻어 노이즈 제거, 영상 분할, 3D 광간섭 단층 영상을 재구성 할 수 있었다.

  • PDF

딥러닝 기반의 Semantic Segmentation을 위한 Residual U-Net에 관한 연구 (A Study on Residual U-Net for Semantic Segmentation based on Deep Learning)

  • 신석용;이상훈;한현호
    • 디지털융복합연구
    • /
    • 제19권6호
    • /
    • pp.251-258
    • /
    • 2021
  • 본 논문에서는 U-Net 기반의 semantic segmentation 방법에서 정확도를 향상시키기 위해 residual learning을 활용한 인코더-디코더 구조의 모델을 제안하였다. U-Net은 딥러닝 기반의 semantic segmentation 방법이며 자율주행 자동차, 의료 영상 분석과 같은 응용 분야에서 주로 사용된다. 기존 U-Net은 인코더의 얕은 구조로 인해 특징 압축 과정에서 손실이 발생한다. 특징 손실은 객체의 클래스 분류에 필요한 context 정보 부족을 초래하고 segmentation 정확도를 감소시키는 문제가 있다. 이를 개선하기 위해 제안하는 방법은 기존 U-Net에 특징 손실과 기울기 소실 문제를 방지하는데 효과적인 residual learning을 활용한 인코더를 통해 context 정보를 효율적으로 추출하였다. 또한, 인코더에서 down-sampling 연산을 줄여 특징맵에 포함된 공간 정보의 손실을 개선하였다. 제안하는 방법은 Cityscapes 데이터셋 실험에서 기존 U-Net 방법에 비해 segmentation 결과가 약 12% 향상되었다.

Brain Hologram Visualization for Diagnosis of Tumors using Graphic Imaging

  • Nam, Jenie;Kim, Young Jae;Lee, Seung Hyun;Kim, Kwang Gi
    • Journal of Multimedia Information System
    • /
    • 제3권3호
    • /
    • pp.47-52
    • /
    • 2016
  • This research paper examines the usage of graphic imaging in Holographic Projections to further advance the medical field. It highlights the importance and necessity of this technology as well as avant-garde techniques applied in the process of displaying images in digital holography. This paper also discusses the different types of applications for holograms in society today. Different tools were utilized to transfer a set of a cancer patient's brain tumor data into data used to produce a 3D holographic image. This image was produced through the transfer of data from one program to another. Through the use of semi-automatic segmentation through the seed region method, we were able to create a 3D visualization from Computed Tomography (CT) data.

An Automated Way to Detect Tumor in Liver

  • Meenu Sharma. Rafat Parveen
    • International Journal of Computer Science & Network Security
    • /
    • 제23권10호
    • /
    • pp.209-213
    • /
    • 2023
  • In recent years, the image processing mechanisms are used widely in several medical areas for improving earlier detection and treatment stages, in which the time factor is very important to discover the disease in the patient as possible as fast, especially in various cancer tumors such as the liver cancer. Liver cancer has been attracting the attention of medical and sciatic communities in the latest years because of its high prevalence allied with the difficult treatment. Statistics indicate that liver cancer, throughout world, is the one that attacks the greatest number of people. Over the time, study of MR images related to cancer detection in the liver or abdominal area has been difficult. Early detection of liver cancer is very important for successful treatment. There are few methods available to detect cancerous cells. In this paper, an automatic approach that integrates the intensity-based segmentation and k-means clustering approach for detection of cancer region in MRI scan images of liver.

Semi-automated Approach to Hippocampus Segmentation Using Snake from Brain MRI

  • Al Shidaifat, Ala'a Ddin;Al-Shdefat, Ramadan;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제17권5호
    • /
    • pp.566-572
    • /
    • 2014
  • The hippocampus has been known as one of the most important structure related to many neurological disorders, such as Alzheimer's disease. This paper presents the snake model to segment hippocampus from brain MRI. The snake model or active contour model is widely used in medical image processing fields, especially image segmentation they look onto nearby edge, localizing them accurately. We applied a snake model on brain MRI. Then we compared our results with an active shape approach. The results show that hippocampus was successfully segmented by the snake model.

Contrast Enhancement for Segmentation of Hippocampus on Brain MR Images

  • Sengee, Nyamlkhagva;Sengee, Altansukh;Adiya, Enkhbolor;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제15권12호
    • /
    • pp.1409-1416
    • /
    • 2012
  • An image segmentation result depends on pre-processing steps such as contrast enhancement, edge detection, and smooth filtering etc. Especially medical images are low contrast and contain some noises. Therefore, the contrast enhancement and noise removal techniques are required in the pre-processing. In this study, we present an extension by a novel histogram equalization in which both local and global contrast is enhanced using neighborhood metrics. When checking neighborhood information, filters can simultaneously improve image quality. Most important is that original image information can be used for both global brightness preserving and local contrast enhancement, and image quality improvement filtering. Our experiments confirmed that the proposed method is more effective than other similar techniques reported previously.

딥러닝 기반의 대퇴골 영역 분할을 위한 훈련 데이터 증강 연구 (Data Augmentation Method for Deep Learning based Medical Image Segmentation Model)

  • 최규진;신주연;경주현;경민호;이윤진
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제25권3호
    • /
    • pp.123-131
    • /
    • 2019
  • 본 연구에서는 CT 영상의 대퇴골 부위를 해부학적으로 의미 있게 변형하여 CT 영상의 대퇴골 영역을 분할하기 위한 컨벌루션 신경망(CNN)의 훈련 데이터를 증강하는 방법을 제안한다. 먼저 CT 영상으로부터 삼차원 삼각형 대퇴골 메쉬를 얻는다. 그 후 메쉬의 국소부위에 대한 기하학적 특성을 계산하고, 군집화하여 메쉬를 의미 있는 부분들로 분할한다. 마지막으로, 분할한 부분들을 적절한 알고리즘으로 변형한 뒤, 이를 바탕으로 CT 영상을 와핑하여 새로운 CT영상을 생성하였다. 본 연구의 데이터 증강 방법을 이용하여 학습시킨 딥러닝 모델은 기하학적 변환이나 색상 변환 같이 일반적으로 사용되는 데이터 증강법과 비교하여 더 나은 영상분할 성능을 보인다.

Gamma correction FCM algorithm with conditional spatial information for image segmentation

  • Liu, Yang;Chen, Haipeng;Shen, Xuanjing;Huang, Yongping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권9호
    • /
    • pp.4336-4354
    • /
    • 2018
  • Fuzzy C-means (FCM) algorithm is a most usually technique for medical image segmentation. But conventional FCM fails to perform well enough on magnetic resonance imaging (MRI) data with the noise and intensity inhomogeneity (IIH). In the paper, we propose a Gamma correction conditional FCM algorithm with spatial information (GcsFCM) to solve this problem. Firstly, the pre-processing, Gamma correction, is introduced to enhance the details of images. Secondly, the spatial information is introduced to reduce the effect of noise. Then we introduce the effective neighborhood mechanism into the local space information to improve the robustness for the noise and inhomogeneity. And the mechanism describes the degree of participation in generating local membership values and building clusters. Finally, the adjustment mechanism and the spatial information are combined into the weighted membership function. Experimental results on four image volumes with noise and IIH indicate that the proposed GcsFCM algorithm is more effective and robust to noise and IIH than the FCM, sFCM and csFCM algorithms.