• Title/Summary/Keyword: medical body area network

Search Result 64, Processing Time 0.026 seconds

A Distributed address allocation scheme based on three-dimensional coordinate for efficient routing in WBAN (WBAN 환경에서 효율적인 라우팅을 위한 3차원 좌표 주소할당 기법의 적용)

  • Lee, Jun-Hyuk
    • Journal of Digital Contents Society
    • /
    • v.15 no.6
    • /
    • pp.663-673
    • /
    • 2014
  • The WBAN technology means a short distance wireless network which provides each device interactive communication by connecting devices inside and outside of body. Standardization on the physical layer, data link layer, network layer and application layer is in progress by IEEE 802.15.6 TG BAN. Wireless body area network is usually configured in energy efficient using sensor and zigbee device due to the power limitation and the characteristics of human body. Wireless sensor network consist of sensor field and sink node. Sensor field are composed a lot of sensor node and sink node collect sensing data. Wireless sensor network has capacity of the self constitution by protocol where placed in large area without fixed position. In this paper, we proposed the efficient addressing scheme for improving the performance of routing algorithm by using ZigBee in WBAN environment. A distributed address allocation scheme used an existing algorithm that has wasted in address space. Therefore proposing x, y and z coordinate axes from divided address space of 16 bit to solve this problems. Each node was reduced not only bitwise but also multi hop using the coordinate axes while routing than Cskip algorithm. I compared the performance between the standard and the proposed mechanism through the numerical analysis. Simulation verified performance about decrease averaging multi hop count that compare proposing algorithm and another. The numerical analysis results show that proposed algorithm reduced the multi hop better than ZigBee distributed address assignment

Design of a Miniaturized High-Isolation Diversity Antenna for Wearable WBAN Applications

  • Kim, Seongjin;Kwon, Kyeol;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • This paper proposes a miniaturized high-isolation diversity antenna for wearable wireless body area network (WBAN) applications. An inverted-F type radiating element is used to reduce the overall dimension of the proposed antenna to $30mm{\times}30mm{\times}2.5mm$. The antenna performance on the human body phantom is analyzed through simulation and the performance of the fabricated antenna is verified by comparing the measured data with that of the simulation when the antenna is placed on a semi-solid flat phantom with equivalent electrical properties of a human body. The fabricated antenna has a 10 dB return loss bandwidth over the Industrial Scientific Medical (ISM) band from 2.35 GHz to 2.71 GHz and isolation is higher than 28 dB at 2.45 GHz. The measured peak gain of antenna elements # 1 and # 2 is -0.43 dBi and -0.54 dBi, respectively. Performance parameters are analyzed, including envelope correlation coefficient (ECC), mean effective gain (MEG), and the MEG ratio. In addition, the specific absorption ratio (SAR) distributions of the proposed antenna are measured for consideration in use.

Efficient Transmission Structure and Key Management Mechanism Using Key Provisioning on Medical Sensor Networks (의료 센서 네트워크에서의 효율적인 전송 구조 및 Key Provisioning을 사용한 키 관리 기법 연구)

  • Seo, Jae-Won;Kim, Mi-Hui;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.16C no.3
    • /
    • pp.285-298
    • /
    • 2009
  • According to the development of ubiquitous technologies, sensor networks is used in various area. In particular, medical field is one of the significant application areas using sensor networks, and recently it has come to be more important according to standardization of the body sensor networks technology. There are special characteristics of their own for medical sensor networks, which are different from the one of sensor networks for general application or environment. In this paper, we propose a hierarchical medical sensor networks structure considering own properties of medical applications, and also introduce transmission mechanism based on hierarchical structure. Our mechanism uses the priority and threshold value for medical sensor nodes considering patient's needs and health condition. Through this way Cluster head can transmit emergency data to the Base station rapidly. We also present the new key establishment mechanism based on key management mechanism which is proposed by L. Eschenauer and V. Gligor for our proposed structure and transmission mechanism. We use key provisioning for emergency nodes that have high priority based on patients' health condition. This mechanism guarantees the emergency nodes to establish the key and transmit the urgent message to the new cluster head more rapidly through preparing key establishment with key provisioning. We analyze the efficiency of our mechanism through comparing the amount of traffic and energy consumption with analysis and simulation with QualNet simulator. We also implemented our key management mechanism on TmoteSKY sensor board using TinyOS 2.0 and through this experiments we proved that the new mechanism could be actually utilized in network design.

Proposed Architecture for U-Healthcare Systems

  • Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.43-46
    • /
    • 2016
  • Modernization of the medical healthcare system, through the use of technology, has become an important field of study today. The healthcare system is intended to efficiently deliver care and services to consumers. It is such that the healthcare system is defined as an industry which provides health services (health activities) so as to meet the health needs and demands of individuals, the family and the community. In this study, transforming healthcare so as to better meet the needs of patients will require changes in the strength of delivering care for patients who already have good access to services, while also improving the care for patients who find it harder to get the care they need.

Random Access Phase Optimal Allocation Method Through Pattern Correction in WBAN (WBAN 환경에서 패턴 보정을 통한 임의접근구간 최적 할당 방법)

  • Lee, ChangHo;Kim, Kanghee;Kim, JiWon;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.92-105
    • /
    • 2015
  • WBAN (Wireless Body Area Network) is a network which is to consistently monitor body signals with implanted or attached sensor nodes. Especially, nodes that are used in medical services have to operate with low power consumption since they are hard to replace, and have to guarantee high data rate and low transmission delay for consistent signal monitor. In this paper, we propose an algorithm that aims to reduce transmission delay and power consumption, and guarantees stable throughput, by assuming the number of active nodes, and followed by dynamically adjusting the random access period and transmission possibilities in a superframe. The assumed number of active nodes may be incorrect since it only relies on the channel status of a previous superframe. Therefore, we assume the number of active nodes and define a pattern. And revise the number of the active nodes with the defined pattern. To evaluate the performance of the proposed algorithm, we have implemented a WBAN environment with the MATLAB. The simulation results show that the proposed algorithm provides better throughput, low power consumption, and low transmission delay when compared to the slotted ALOHA of the IEEE 802.15.6.

A Survey on Spectrum Sharing in Cognitive Radio Networks

  • Xu, Tangwen;Li, Zhenshuang;Ge, Jianhua;Ding, Haiyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3751-3774
    • /
    • 2014
  • With the rapid development of wireless communication, the confliction between the scarce frequency resources and the low spectral efficiency caused by the stationary spectrum sharing strategies seriously restricts the evolution of the future mobile communication. For this purpose, cognitive radio (CR) emerges as one of the most promising inventions which can overcome the spectrum shortage. As the key technology and main objective of CR, spectrum sharing can make full use of the limited spectrum, alleviate the scarcity of frequency resources and improve the system utilities, playing thereby an important role in improving the system performance of cognitive radio networks (CRNs). In this survey, the spectrum sharing in CRNs is discussed in terms of the sharing process, mainstream sharing technologies and spectrum sharing models. In particular, comparisons of different spectrum sharing strategies are concluded, as well as that of different spectrum sensing schemes in sharing procedure. Moreover, some application examples of the spectrum sharing in CRNs, such as smart grid, public safety, cellular network and medical body area networks are also introduced. In addition, our previous related works are presented and the open research issues in the field of spectrum sharing are stated as well.

Geohashed Spatial Index Method for a Location-Aware WBAN Data Monitoring System Based on NoSQL

  • Li, Yan;Kim, Dongho;Shin, Byeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.263-274
    • /
    • 2016
  • The exceptional development of electronic device technology, the miniaturization of mobile devices, and the development of telecommunication technology has made it possible to monitor human biometric data anywhere and anytime by using different types of wearable or embedded sensors. In daily life, mobile devices can collect wireless body area network (WBAN) data, and the co-collected location data is also important for disease analysis. In order to efficiently analyze WBAN data, including location information and support medical analysis services, we propose a geohash-based spatial index method for a location-aware WBAN data monitoring system on the NoSQL database system, which uses an R-tree-based global tree to organize the real-time location data of a patient and a B-tree-based local tree to manage historical data. This type of spatial index method is a support cloud-based location-aware WBAN data monitoring system. In order to evaluate the proposed method, we built a system that can support a JavaScript Object Notation (JSON) and Binary JSON (BSON) document data on mobile gateway devices. The proposed spatial index method can efficiently process location-based queries for medical signal monitoring. In order to evaluate our index method, we simulated a small system on MongoDB with our proposed index method, which is a document-based NoSQL database system, and evaluated its performance.

An IT/Medical Converged Solution based on the Expert System for Enhancing U-Healthcare Services in Middle-sized Medical Environment (중소형 의료 환경에서 U-헬스케어 서비스 향상을 위한 전문가 시스템 기반 IT/의료 융합 솔루션)

  • Ryu, Dong-Woo;Kang, Kyung-Jin;Cho, Min-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1318-1324
    • /
    • 2010
  • Recently, U-Healthcare is receiving attentions as a research for reducing the manpower, time in treatment, and etc. Although fundamental technologies, such as sensing, measuring, and etc. are sufficiently investigated. However, Technologies of IT/Medical convergence, which graft IT technologies to medical area, are still in germ. For this, we present a novel healthcare system, which can be applied to the middle sized medical environment, such as private hospital, home, or etc., by means of pre-verified technologies and the expert system. There exist IT element technologies are sufficiently developed in the fields, such as network, database or etc. due to the remarkable developments in IT technologies, and the healthcare is a mission-critical environment. Therefore, it is important not only to investigate novel approaches but also to utilize verified technologies for the U-Healthcare solution. Presented solution provisions automated medical services based on expert system by utilizing the measured data, such as body fat, blood pressure, blood glucose, and etc., in order to provide convenient treatment environment to doctors and nurses. In addition, since people, who do not have medical knowledge, can self-diagnose themselves, it is expected to cut medical costs in various areas. Especially, since each devices communicate with each other through standardized Bluetooth technology, Presented healthcare system is an extensible solution which can easily accept various medical devices. As a result of this, we can safely say that the self measurement and diagnosis services in U-Healthcare are now enhanced by reducing medical cost through our healthcare system.

An Emergency Management Architecture Using Personalized Emergency Policy for Smart Healthcare (스마트 헬스케어를 위한 사용자 맞춤형 응급 정책을 활용한 응급 관리 구조)

  • Chun, Seung-Man;Choi, Joo-Yeon;Park, Jong-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.3-11
    • /
    • 2013
  • In smart healthcare service, the accurate and prompt emergency detection and notification are very critical to patients' lives. Since these detection and notification of emergency situation are usually performed by the medical staffs, it is difficult to simultaneously support many patients in real-time. This article presents a methodology for emergency bio-data transmission for smart healthcare using personalized emergency policy. It consists of three steps: In step 1, the bio-data is collected by wireless body area network. In step 2, the decision on emergency is made using personalized emergency policy. In step 3, the emergency message including the health condition information is converted between IEEE 11073 PHD message and HL7 CDA. By doing this, the emergency status of the individual bio-data collected from wireless body area network is detected automatically using personalized emergency policy. When the emergency is detected, the quick emergency rescue service can be provided to the patient by delivering to the emergency notification and the emergency bio-data. We have verified the service and functions of the proposed system architecture by realizing it.

Effects of Contrast Phases on Automated Measurements of Muscle Quantity and Quality Using CT

  • Dong Wook Kim;Kyung Won Kim;Yousun Ko;Taeyong Park;Jeongjin Lee;Jung Bok Lee;Jiyeon Ha;Hyemin Ahn;Yu Sub Sung;Hong-Kyu Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1909-1917
    • /
    • 2021
  • Objective: Muscle quantity and quality can be measured with an automated system on CT. However, the effects of contrast phases on the muscle measurements have not been established, which we aimed to investigate in this study. Materials and Methods: Muscle quantity was measured according to the skeletal muscle area (SMA) measured by a convolutional neural network-based automated system at the L3 level in 89 subjects undergoing multiphasic abdominal CT comprising unenhanced phase, arterial phase, portal venous phase (PVP), or delayed phase imaging. Muscle quality was analyzed using the mean muscle density and the muscle quality map, which comprises normal and low-attenuation muscle areas (NAMA and LAMA, respectively) based on the muscle attenuation threshold. The SMA, mean muscle density, NAMA, and LAMA were compared between PVP and other phases using paired t tests. Bland-Altman analysis was used to evaluate the inter-phase variability between PVP and other phases. Based on the cutoffs for low muscle quantity and quality, the counts of individuals who scored lower than the cutoff values were compared between PVP and other phases. Results: All indices showed significant differences between PVP and other phases (p < 0.001 for all). The SMA, mean muscle density, and NAMA increased during the later phases, whereas LAMA decreased during the later phases. Bland-Altman analysis showed that the mean differences between PVP and other phases ranged -2.1 to 0.3 cm2 for SMA, -12.0 to 2.6 cm2 for NAMA, and -2.2 to 9.9 cm2 for LAMA.The number of patients who were categorized as low muscle quantity did not significant differ between PVP and other phases (p ≥ 0.5), whereas the number of patients with low muscle quality significantly differed (p ≤ 0.002). Conclusion: SMA was less affected by the contrast phases. However, the muscle quality measurements changed with the contrast phases to greater extents and would require a standardization of the contrast phase for reliable measurement.