• Title/Summary/Keyword: media recommendation

Search Result 218, Processing Time 0.024 seconds

Development of Story Recommendation through Character Web Drama Cliché Analysis (캐릭터 웹드라마 클리셰 분석을 통한 스토리 추천 개발)

  • Hyun-Su Lee;Jung-Yi Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.17-22
    • /
    • 2023
  • This study analyzed the genres of popular character web dramas and studied the development of story recommendations through the language model GPT. As a result of the study, it was confirmed that similar cliches are repeated in web dramas. In this study, a common story structure (cliché) was analyzed and a typical story structure was standardized and presented so that even unskilled video producers can easily produce character web dramas. For analysis, clichés of web dramas in the school romance genre, which is the most popular genre among teenagers, were listed in order of success. In addition, this study studied the story recommendation mechanism for users by learning the clichés that were analyzed and cataloged in GPT. Through this study, it is expected to accelerate the production of various contents as well as popular popularity through the acceptance of various databases from the standpoint of database consumption theory of web contents.

A Study on Recommendation Application of Air Purification Companion Plant using MBTI (MBTI를 통한 공기 정화 반려식물 추천 애플리케이션 연구)

  • Yu-Jun Kang;Youn-Seo Lee;Hyeon-Ah Kim;Hee-Soo Kim;Won-Whoi Huh
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.139-145
    • /
    • 2024
  • Since COVID-19, most of people's main living spaces have been moved indoors. Due to this influence, many people's interest in companion plants continues to rise. People who raise companion plants often raise them for the purpose of emotional stability or air purification. In fact, plants have the effect of giving people a sense of emotional stability and the ability to purify indoor air is excellent depending on what kind of plant they are. However, if you do not have knowledge of plants, you will not know which plants have excellent air purification effects, and even if you grow them, you will face a problem that withers quickly. Therefore, in this paper, we develop an app that provides users who do not have prior knowledge to store and manage their MBTI and member information in a database using databases and MBTI, and based on this, recommend plant data that fits their preferences with the user and manage their schedules through calendars.

Investigating the Performance of Bayesian-based Feature Selection and Classification Approach to Social Media Sentiment Analysis (소셜미디어 감성분석을 위한 베이지안 속성 선택과 분류에 대한 연구)

  • Chang Min Kang;Kyun Sun Eo;Kun Chang Lee
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.1-19
    • /
    • 2022
  • Social media-based communication has become crucial part of our personal and official lives. Therefore, it is no surprise that social media sentiment analysis has emerged an important way of detecting potential customers' sentiment trends for all kinds of companies. However, social media sentiment analysis suffers from huge number of sentiment features obtained in the process of conducting the sentiment analysis. In this sense, this study proposes a novel method by using Bayesian Network. In this model MBFS (Markov Blanket-based Feature Selection) is used to reduce the number of sentiment features. To show the validity of our proposed model, we utilized online review data from Yelp, a famous social media about restaurant, bars, beauty salons evaluation and recommendation. We used a number of benchmarking feature selection methods like correlation-based feature selection, information gain, and gain ratio. A number of machine learning classifiers were also used for our validation tasks, like TAN, NBN, Sons & Spouses BN (Bayesian Network), Augmented Markov Blanket. Furthermore, we conducted Bayesian Network-based what-if analysis to see how the knowledge map between target node and related explanatory nodes could yield meaningful glimpse into what is going on in sentiments underlying the target dataset.

Getting Closer to Consumer Performance Experience: Research on Performance Experience Components through Online Post Analysis (소비자의 공연 경험에 다가가기 - 온라인 게시글 분석을 통한 공연 경험의 구성요소 탐구 -)

  • Ko, Yena;Lee, Joongseek;Kim, Eun-mee;Lee, Soomin
    • Korean Association of Arts Management
    • /
    • no.52
    • /
    • pp.75-105
    • /
    • 2019
  • In studying culture consumption today, it is essential to understand and analyze the actual visitors' experiences in detail. This is deeply related to the fact that we can utilize subjective experience records that were previously inaccessible as data since plenty of people actually record many performance experiences in the media space such as social media. This study attempts to examine what elements actually consists of people's performance experience based on actual expression of the performance experience that exists online. For this, we collected two types of data. First, we collected posts which required performance recommendation on online platforms such as Jisik-In and Cafes to see how people describe what they want and analyzed data focusing on the modifiers. Results show that people mainly use modifiers that reflect the specific situation of the individual such as companion or age. In addition we analyzed how the experience was described after the show through the review posts of ticket booking site. Results show how expressions are centered around companions, revisit intentions, and viewing experiences besides elements such as story and music, which have been known as main satisfaction elements of performance experience in previous studies. In addition, we discussed the practical implications and limitations of the study as well as the theoretical discussion.

A Study on the Influence of Value, Design, Price, and Recommendation on Children's Jewelry Products on the Psychological Characteristics of Consumer Purchasing (아동 Jewelry 제품에 대한 가치, 디자인, 가격, 추천이 소비자 구매의 심리적 특성에 미치는 영향에 관한 연구)

  • Lee, Ji-Hun;Park, Tae-Kyung
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.7
    • /
    • pp.75-85
    • /
    • 2019
  • This study was intended to identify the influence of brand value, Jewelry design, recommendation, Jewelry price, recognition, and satisfaction on purchase intent and to present a marketing strategy to draw up an activation plan for the child Jewelry market. Therefore, the implications of this study are as follows: First, companies should give consumers a sense of brand value through media promotion so that consumers can recognize it. Second, companies will have to set up marketing strategies to further enhance brand value through production of limited edition products. It will also have to develop a strategy to expand the type of product by promoting the product along with the product that has been recognized. Third, companies will have to diversify their product designs and expand the range of design choices for consumers through detailed design contests for design professionals, ordinary people and housewives. Fourth, when recommending a product to an acquaintance, you should make a recommendation considering the members of the household, individuality, and taste. Fifth, the company will have to push forward the diversification of prices as well as the diversification of products. Finally, companies will have to set up marketing strategies that meet consumers' needs, such as expanding point reserves for products, hosting promotions and one-plus-won events with friends.

Content-based Recommendation Based on Social Network for Personalized News Services (개인화된 뉴스 서비스를 위한 소셜 네트워크 기반의 콘텐츠 추천기법)

  • Hong, Myung-Duk;Oh, Kyeong-Jin;Ga, Myung-Hyun;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.57-71
    • /
    • 2013
  • Over a billion people in the world generate new news minute by minute. People forecasts some news but most news are from unexpected events such as natural disasters, accidents, crimes. People spend much time to watch a huge amount of news delivered from many media because they want to understand what is happening now, to predict what might happen in the near future, and to share and discuss on the news. People make better daily decisions through watching and obtaining useful information from news they saw. However, it is difficult that people choose news suitable to them and obtain useful information from the news because there are so many news media such as portal sites, broadcasters, and most news articles consist of gossipy news and breaking news. User interest changes over time and many people have no interest in outdated news. From this fact, applying users' recent interest to personalized news service is also required in news service. It means that personalized news service should dynamically manage user profiles. In this paper, a content-based news recommendation system is proposed to provide the personalized news service. For a personalized service, user's personal information is requisitely required. Social network service is used to extract user information for personalization service. The proposed system constructs dynamic user profile based on recent user information of Facebook, which is one of social network services. User information contains personal information, recent articles, and Facebook Page information. Facebook Pages are used for businesses, organizations and brands to share their contents and connect with people. Facebook users can add Facebook Page to specify their interest in the Page. The proposed system uses this Page information to create user profile, and to match user preferences to news topics. However, some Pages are not directly matched to news topic because Page deals with individual objects and do not provide topic information suitable to news. Freebase, which is a large collaborative database of well-known people, places, things, is used to match Page to news topic by using hierarchy information of its objects. By using recent Page information and articles of Facebook users, the proposed systems can own dynamic user profile. The generated user profile is used to measure user preferences on news. To generate news profile, news category predefined by news media is used and keywords of news articles are extracted after analysis of news contents including title, category, and scripts. TF-IDF technique, which reflects how important a word is to a document in a corpus, is used to identify keywords of each news article. For user profile and news profile, same format is used to efficiently measure similarity between user preferences and news. The proposed system calculates all similarity values between user profiles and news profiles. Existing methods of similarity calculation in vector space model do not cover synonym, hypernym and hyponym because they only handle given words in vector space model. The proposed system applies WordNet to similarity calculation to overcome the limitation. Top-N news articles, which have high similarity value for a target user, are recommended to the user. To evaluate the proposed news recommendation system, user profiles are generated using Facebook account with participants consent, and we implement a Web crawler to extract news information from PBS, which is non-profit public broadcasting television network in the United States, and construct news profiles. We compare the performance of the proposed method with that of benchmark algorithms. One is a traditional method based on TF-IDF. Another is 6Sub-Vectors method that divides the points to get keywords into six parts. Experimental results demonstrate that the proposed system provide useful news to users by applying user's social network information and WordNet functions, in terms of prediction error of recommended news.

Multi-day Trip Planning System with Collaborative Recommendation (협업적 추천 기반의 여행 계획 시스템)

  • Aprilia, Priska;Oh, Kyeong-Jin;Hong, Myung-Duk;Ga, Myeong-Hyeon;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.159-185
    • /
    • 2016
  • Planning a multi-day trip is a complex, yet time-consuming task. It usually starts with selecting a list of points of interest (POIs) worth visiting and then arranging them into an itinerary, taking into consideration various constraints and preferences. When choosing POIs to visit, one might ask friends to suggest them, search for information on the Web, or seek advice from travel agents; however, those options have their limitations. First, the knowledge of friends is limited to the places they have visited. Second, the tourism information on the internet may be vast, but at the same time, might cause one to invest a lot of time reading and filtering the information. Lastly, travel agents might be biased towards providers of certain travel products when suggesting itineraries. In recent years, many researchers have tried to deal with the huge amount of tourism information available on the internet. They explored the wisdom of the crowd through overwhelming images shared by people on social media sites. Furthermore, trip planning problems are usually formulated as 'Tourist Trip Design Problems', and are solved using various search algorithms with heuristics. Various recommendation systems with various techniques have been set up to cope with the overwhelming tourism information available on the internet. Prediction models of recommendation systems are typically built using a large dataset. However, sometimes such a dataset is not always available. For other models, especially those that require input from people, human computation has emerged as a powerful and inexpensive approach. This study proposes CYTRIP (Crowdsource Your TRIP), a multi-day trip itinerary planning system that draws on the collective intelligence of contributors in recommending POIs. In order to enable the crowd to collaboratively recommend POIs to users, CYTRIP provides a shared workspace. In the shared workspace, the crowd can recommend as many POIs to as many requesters as they can, and they can also vote on the POIs recommended by other people when they find them interesting. In CYTRIP, anyone can make a contribution by recommending POIs to requesters based on requesters' specified preferences. CYTRIP takes input on the recommended POIs to build a multi-day trip itinerary taking into account the user's preferences, the various time constraints, and the locations. The input then becomes a multi-day trip planning problem that is formulated in Planning Domain Definition Language 3 (PDDL3). A sequence of actions formulated in a domain file is used to achieve the goals in the planning problem, which are the recommended POIs to be visited. The multi-day trip planning problem is a highly constrained problem. Sometimes, it is not feasible to visit all the recommended POIs with the limited resources available, such as the time the user can spend. In order to cope with an unachievable goal that can result in no solution for the other goals, CYTRIP selects a set of feasible POIs prior to the planning process. The planning problem is created for the selected POIs and fed into the planner. The solution returned by the planner is then parsed into a multi-day trip itinerary and displayed to the user on a map. The proposed system is implemented as a web-based application built using PHP on a CodeIgniter Web Framework. In order to evaluate the proposed system, an online experiment was conducted. From the online experiment, results show that with the help of the contributors, CYTRIP can plan and generate a multi-day trip itinerary that is tailored to the users' preferences and bound by their constraints, such as location or time constraints. The contributors also find that CYTRIP is a useful tool for collecting POIs from the crowd and planning a multi-day trip.

Major Class Recommendation System based on Deep learning using Network Analysis (네트워크 분석을 활용한 딥러닝 기반 전공과목 추천 시스템)

  • Lee, Jae Kyu;Park, Heesung;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.95-112
    • /
    • 2021
  • In university education, the choice of major class plays an important role in students' careers. However, in line with the changes in the industry, the fields of major subjects by department are diversifying and increasing in number in university education. As a result, students have difficulty to choose and take classes according to their career paths. In general, students choose classes based on experiences such as choices of peers or advice from seniors. This has the advantage of being able to take into account the general situation, but it does not reflect individual tendencies and considerations of existing courses, and has a problem that leads to information inequality that is shared only among specific students. In addition, as non-face-to-face classes have recently been conducted and exchanges between students have decreased, even experience-based decisions have not been made as well. Therefore, this study proposes a recommendation system model that can recommend college major classes suitable for individual characteristics based on data rather than experience. The recommendation system recommends information and content (music, movies, books, images, etc.) that a specific user may be interested in. It is already widely used in services where it is important to consider individual tendencies such as YouTube and Facebook, and you can experience it familiarly in providing personalized services in content services such as over-the-top media services (OTT). Classes are also a kind of content consumption in terms of selecting classes suitable for individuals from a set content list. However, unlike other content consumption, it is characterized by a large influence of selection results. For example, in the case of music and movies, it is usually consumed once and the time required to consume content is short. Therefore, the importance of each item is relatively low, and there is no deep concern in selecting. Major classes usually have a long consumption time because they have to be taken for one semester, and each item has a high importance and requires greater caution in choice because it affects many things such as career and graduation requirements depending on the composition of the selected classes. Depending on the unique characteristics of these major classes, the recommendation system in the education field supports decision-making that reflects individual characteristics that are meaningful and cannot be reflected in experience-based decision-making, even though it has a relatively small number of item ranges. This study aims to realize personalized education and enhance students' educational satisfaction by presenting a recommendation model for university major class. In the model study, class history data of undergraduate students at University from 2015 to 2017 were used, and students and their major names were used as metadata. The class history data is implicit feedback data that only indicates whether content is consumed, not reflecting preferences for classes. Therefore, when we derive embedding vectors that characterize students and classes, their expressive power is low. With these issues in mind, this study proposes a Net-NeuMF model that generates vectors of students, classes through network analysis and utilizes them as input values of the model. The model was based on the structure of NeuMF using one-hot vectors, a representative model using data with implicit feedback. The input vectors of the model are generated to represent the characteristic of students and classes through network analysis. To generate a vector representing a student, each student is set to a node and the edge is designed to connect with a weight if the two students take the same class. Similarly, to generate a vector representing the class, each class was set as a node, and the edge connected if any students had taken the classes in common. Thus, we utilize Node2Vec, a representation learning methodology that quantifies the characteristics of each node. For the evaluation of the model, we used four indicators that are mainly utilized by recommendation systems, and experiments were conducted on three different dimensions to analyze the impact of embedding dimensions on the model. The results show better performance on evaluation metrics regardless of dimension than when using one-hot vectors in existing NeuMF structures. Thus, this work contributes to a network of students (users) and classes (items) to increase expressiveness over existing one-hot embeddings, to match the characteristics of each structure that constitutes the model, and to show better performance on various kinds of evaluation metrics compared to existing methodologies.

Development and Evaluation of Sanitation Education Media for Restaurant Employers and Employees (외식업소 업주 및 조리종사자를 위한 위생교육매체 개발 및 평가)

  • Park, You-Hwa;Kim, Hyun-Hee;Shin, Eun-Kyung;Jun, So-Yun;Lee, Yeon-Kyung
    • Journal of the Korean Dietetic Association
    • /
    • v.14 no.2
    • /
    • pp.139-151
    • /
    • 2008
  • Presently, media for sanitation education consisting of a sanitation manual and a CD-ROM intended for restaurant employers and employees was developed and evaluated. The sanitation manual consisted of five principles: prevention of foodborne illness, personal hygiene, control of food production, instrument and equipment cleaning and sanitation, and management of environmental sanitation. The CD-ROM was composed of animations detailed real-life examples of Salmonella, Staphylococcus aureus, and Norovirus foodborned illness outbreaks; slides summarizing the five principles of the manual; and a poster entitled You can prevent foodborne illness listing and describing the principles. A 15 question evaluation survey was developed to gauge the efficacy of the animations. The survey was divided into five sections on comprehension of the instructions, content organization concerning understanding, content organization concerning the information presented, content organization concerning retention of interest (concentration), and recommendations concerning concentration. Ranked on a 5-point scale the survey produced a mean value of 3.80$\pm$0.39 and individual scores of 3.92$\pm$0.45 (learning instruction), 3.86$\pm$0.48 (understanding), 3.82$\pm$0.52 (information), 3.75$\pm$0.49 (concentration), and 3.67$\pm$0.58 (concentration-recommendation). Overall, evaluation results of the animation were good and easy to understand, with only a few respondents electing to watch the animations more than once. In terms of continuous and recurring education, sanitation training programs should be easy to learn and contain sufficient and specific examples of the importance of sanitation in achieving food safety.

  • PDF

Webdrama Analysis and Recommendation using Text Mining and Opinion Mining Technique of Social Media (소셜미디어 빅데이터의 텍스트 마이닝과 오피니언 마이닝 기법을 활용한 웹드라마 분석과 제안)

  • Oh, Se-Jong;Kim, Kenneth Chi Ho
    • Cartoon and Animation Studies
    • /
    • s.44
    • /
    • pp.285-306
    • /
    • 2016
  • With the increase use of smartphones, users can consume contents such as webtoon, webnovel and TV drama directly provided by the producers. In this Direct-to-Consumer era, webdrama services from the portal websites are increasing rapidly. Webdramas such as , , and can be analyzed in real time using responses such as unique users, likes, and comments. The analyses used in this research were Social Media Big Data Mining Method and Opinion Mining Method. Specific key words from webdrama can be extracted and viewers positive, neutral or negative emotion can be predicted from the words. The analyses of popular webdramas showed that the established K-Pop Idol member appearance and servicing portal site greatly influence the views, traffics, comments, and likes. Also, 'Mobile TV' proved the effectiveness as another platform other than television. Mobile targeted contents and robust business models still to be developed and identified. Overcoming these few tasks, Korea will be proven to be a webdrama content powerhouse.