• Title/Summary/Keyword: mechatronics industry

Search Result 212, Processing Time 0.021 seconds

Design of Robust Controller and Virtual Model of Remote Control System using LQG/LTR (LQG/LTR 기법을 적용한 원격제어시스템의 가상모델과 강건제어기의 설계)

  • Jin, Tae-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.193-198
    • /
    • 2022
  • In this paper, we introduce the improved control method are communicated between a master and a slave robot in the teleoperation systems. When the master and slave robots are located in different places, time delay is unavoidable under the network environment and it is well known that the system can become unstable when even a small time delay exists in the communication channel. The time delay may cause instability in teleoperation systems especially if those systems include haptic feedback. This paper presents a control scheme based on the estimator with virtual master model in teleoperation systems over the network. As the behavior of virtual model is tracking the one of master model, the operator can control real master robot by manipulating the virtual robot. And LQG/LTR scheme was adopted for the compensation of un-modeled dynamics. The approach is based on virtual master model, which has been implemented on a robot over the network. Its performance is verified by the computer simulation and the experiment.

Approaches to Probabilistic Localization and Tracking for Autonomous Mobility Robot in Unknown Environment (미지환경에서 무인이동체의 자율주행을 위한 확률기반 위치 인식과 추적 방법)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.341-347
    • /
    • 2022
  • This paper presents a comparison result of two simultaneous localization and mapping (SLAM) algorithms for navigation that have been proposed in literature. The performances of Extended Kalman Filter (EKF) SLAM under Gaussian condition, FastSLAM algorithms using Rao-Blackwellised method for particle filtering are compared in terms of accuracy of state estimations for localization of a robot and mapping of its environment. The algorithms were run using the same type of robot on indoor environment. The results show that the Particle filter based FastSLAM has the better performance in terms of accuracy of localization and mapping. The experimental results are discussed and compared.

Dynamic Modeling-based Flight P-PD Controller Applied to a Quadrotor

  • Jin, Tae-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_1
    • /
    • pp.513-519
    • /
    • 2022
  • In this paper, we describe performances of P-PD controllers in the quadrotor system with steady-state error compensation by adding a corrective term to the system input. A decentralized control system using P-PD controllers was successfully implemented on a quadrotor platform. We also presented the results of a mathematical modeling analysis for control the quadrotor and experimental results for each response performance according to the heading reference value in accordance with the mathematical modeling and P-PD controller design. A control experiment with the real system was implemented for the test platform, and the results were evaluated and compared.

Voice Command-based Prediction and Follow of Human Path of Mobile Robots in AI Space

  • Tae-Seok Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_1
    • /
    • pp.225-230
    • /
    • 2023
  • This research addresses sound command based human tracking problems for autonomous cleaning mobile robot in a networked AI space. To solve the problem, the difference among the traveling times of the sound command to each of three microphones has been used to calculate the distance and orientation of the sound from the cleaning mobile robot, which carries the microphone array. The cross-correlation between two signals has been applied for detecting the time difference between two signals, which provides reliable and precise value of the time difference compared to the conventional methods. To generate the tracking direction to the sound command, fuzzy rules are applied and the results are used to control the cleaning mobile robot in a real-time. Finally the experiment results show that the proposed algorithm works well, even though the mobile robot knows little about the environment.

Industrial Bin-Picking Applications Using Active 3D Vision System (능동 3D비전을 이용한 산업용 로봇의 빈-피킹 공정기술)

  • Tae-Seok Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.249-254
    • /
    • 2023
  • The use of robots in automated factories requires accurate bin-picking to ensure that objects are correctly identified and selected. In the case of atypical objects with multiple reflections from their surfaces, this is a challenging task. In this paper, we developed a random 3D bin picking system by integrating the low-cost vision system with the robotics system. The vision system identifies the position and posture of candidate parts, then the robot system validates if one of the candidate parts is pickable; if a part is identified as pickable, then the robot will pick up this part and place it accurately in the right location.

Effect of Temperature and Humidity on the Performance Factors of a 15-W Proton Exchange Membrane Fuel Cell

  • Dien Minh Vu;Binh Hoa Pham;Duc Pham Xuan;Dung Nguyen Dinh;Vinh Nguyen Duy
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.241-246
    • /
    • 2023
  • Fuel cells are one of the renewable energy sources that have sparked a lot of scientific attention for solving problems related to the energy crisis and environmental pollution. One of the most crucial subjects concerning the utilization of fuel cells is modeling. Therefore, an analytical steady-state and dynamic fuel cell model was described in this study. The parameter for the identification process was investigated, and the MATLAB/Simulink implementation was demonstrated. A 15-W proton exchange membrane fuel cell was used to apply the suggested modeling methodology. Comparing experimental and simulation findings indicated that the model error was constrained to 3%. This study showed that temperature and humidity affect fuel cell performance.

Development of Automatic Water Level Controlled Smart Filling Machine (수위 연동형 스마트 액체 충진 장치 개발)

  • Lee, Jun-Sik;Lee, Jun-Ho;Roh, Young-Hwa;Park, Jung Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.507-513
    • /
    • 2020
  • Liquid filling machines are frequently used in packaging fields; however, there exists a problem in precisely measuring the quantity of the liquid. In the case where the liquid filling machine is not properly metered, there may be issues, such as the fluid exceeding the capacity or chemicals being exposed outside. In this paper, we propose a smart injection nozzle device that can solve the issues stated above. The proposed smart injection nozzle can raise the nozzle according to the water level to remove bubbles and inject the accurate amount of fluid. In addition, the efficiency of the logistics process is enhanced by the smart QR code. Through experiments using the developed smart injection nozzle device, we have noticed that the accuracy of injection capacity, nozzle position, reaction time and building data exceeded the target value. Therefore, it expected that this machine will give more production and save a lot of manpower for packaging industry.

Development of Robot Vision Technology for Real-Time Recognition of Model of 3D Parts (3D 부품모델 실시간 인식을 위한 로봇 비전기술 개발)

  • Shim, Byoung-Kyun;Choi, Kyung-Sun;jang, Sung-Cheol;Ahn, Yong-Suk;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.4
    • /
    • pp.113-117
    • /
    • 2013
  • This paper describes a new technology to develop the character recognition technology based on pattern recognition for non-contacting inspection optical lens slant or precision parts, and including external form state of lens or electronic parts for the performance verification, this development can achieve badness finding. And, establish to existing reflex data because inputting surface badness degree of scratch's standard specification condition directly, and error designed to distinguish from product more than schedule error to badness product by normalcy product within schedule extent after calculate the error comparing actuality measurement reflex data and standard reflex data mutually. Developed system to smallest 1 pixel unit though measuring is possible 1 pixel as $37{\mu}m{\times}37{\mu}m$ ($0.1369{\times}10-4mm^2$) the accuracy to $1.5{\times}10-4mm$ minutely measuring is possible performance verification and trust ability through an experiment prove.

A Study on Performance Improvement of Industrial Oil Pump Using Computational Analysis (전산해석을 이용한 산업용 오일펌프 성능개선에 관한 연구)

  • Kim, Jin-Woo;Lee, Hyun-Jun;Kong, Seok-Hwan;Lee, Seong-Won;Chung, Won-Ji
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1111-1117
    • /
    • 2022
  • Recently, interest in the circular economy has emerged in the industry. As a result, interest in Re-manufacturing, which makes old equipment similar to new products, is growing. In the machine tool industry with many aging equipment, the Re-manufacturing industry is essential, and among them, research on the performance improvement of gear type oil pumps was conducted. The purpose was to achieve the target performance of flow rate and volume efficiency by changing the shape of the gear pump housing clearance and inlet/outlet, and Computational Fluid Analysis and Central Composite Design were conducted using ANSYS CFX 2022 R2 and MINITAB®. The level of each determined factor was determined. 20 design points were derived, and the Flow Rate at each design point was calculated, and the Theoretical Flow Rate was calculated to obtain Volumetric Efficiency. The optimal design point was obtained when the Flow Rate was 140 lpm and the Volumetric Efficiency was maximum, the optimal design point was obtained when both were maximum, and the Surface Plot for each factor was obtained to identify the tendency.

Analyzing Box-Office Hit Factors Using Big Data: Focusing on Korean Films for the Last 5 Years

  • Hwang, Youngmee;Kim, Kwangsun;Kwon, Ohyoung;Moon, Ilyoung;Shin, Gangho;Ham, Jongho;Park, Jintae
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.217-226
    • /
    • 2017
  • Korea has the tenth largest film industry in the world; however, detailed analyses using the factors contributing to successful film commercialization have not been approached. Using big data, this paper analyzed both internal and external factors (including genre, release date, rating, and number of screenings) that contributed to the commercial success of Korea's top 10 ranking films in 2011-2015. The authors developed a WebCrawler to collect text data about each movie, implemented a Hadoop system for data storage, and classified the data using Map Reduce method. The results showed that the characteristic of "release date," followed closely by "rating" and "genre" were the most influential factors of success in the Korean film industry. The analysis in this study is considered groundwork for the development of software that can predict box-office performance.