• Title/Summary/Keyword: mechanization system

Search Result 169, Processing Time 0.024 seconds

Performance of Air Source Heat Pump with a Fiber Belt Heat Regeneration System (섬유벨트 열재생 시스템을 부착한 공기 열원 열펌프의 난방 성능 특성)

  • 유영선;장진택;김영중;강금춘;윤진하;이건중
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.385-390
    • /
    • 2000
  • The heat pump is one of heating and cooling systems driven by electricity using natural energy as a heat source. The heat pump system was mainly adopted to a cooling system or a refrigeration system. In regions with a large amount of electricity, it is used as a heating system or a heating and cooling system of houses, buildings and agricultural facilities. During cold weather, air source heat pumps do not work well because of some technical problems, such as frosting on evaporator coil when outside air temperature is below -5$^{\circ}C$. In this research, the heat regenerative technology was employed to eliminate the frosting on evaporator coil and improve the COP of the heat pump system. This fiber belt heat regeneration system(FBHRS) has very simple structure consisting of a geared motor and a porous fiber belt passing through alternatively between cold and warm air duct. The laboratory test showed that the heat pump system with a FBHRS yielded an impressive COP higher than 3.5 at the outside air temperature of -7$^{\circ}C$ in heating mode.

  • PDF

Development of Rice Yield Prediction System of Head-Feed Type Combine Harvester (자탈형 콤바인의 실시간 벼 수확량 예측 시스템 개발)

  • Sang Hee Lee;So Young Shin;Deok Gyu Choi;Won-Kyung Kim;Seok Pyo Moon;Chang Uk Cheon;Seok Ho Park;Youn Koo Kang;Sung Hyuk Jang
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.36-43
    • /
    • 2024
  • The yield is basic and necessary information in precision agriculture that reduces input resources and enhances productivity. Yield information is important because it can be used to set up farming plans and evaluate farming results. Yield monitoring systems are commercialized in the United States and Japan but not in Korea. Therefore, such a system must be developed. This study was conducted to develop a yield monitoring system that improved performance by correcting a previously developed flow sensor using a grain tank-weighing system. An impact-plated type flow sensor was installed in a grain tank where grains are placed, and grain tank-weighing sensors were installed under the grain tank to estimate the weight of the grain inside the tank. The grain flow rate and grain weight prediction models showed high correlations, with coefficient of determinations (R2) of 0.9979 and 0.9991, respectively. A main controller of the yield monitoring system that calculated the real-time yield using a sensor output value was also developed and installed in a combine harvester. Field tests of the combine harvester yield monitoring system were conducted in a rice paddy field. The developed yield monitoring system showed high accuracy with an error of 0.13%. Therefore, the newly developed yield monitoring system can be used to predict grain weight with high accuracy.

Field Test of Harvesting Mechanization Technology of Onion at Shinan Area (신안 지역에서의 양파 기계 수확 작업체계 실증시험)

  • Sang Hee Lee;Won-Kyung Kim;Jae Won Eo;Sang Bong Lee;Deok Gyu Choi;Seok Ho Park;Youn Koo Kang;Chang Uk Cheon
    • Journal of Drive and Control
    • /
    • v.21 no.3
    • /
    • pp.20-27
    • /
    • 2024
  • This study aimed to evaluate the impact of mechanizing onion harvesting on labor reduction and work efficiency in Shinan Area. The mechanized harvesting system comprised a stem cutter, digging harvester, and collector. The field tests showed that the average residual stem length after using the stem cutter was 13.22±5.01 cm, with a stem cutting ratio of 91.3% and a damage ratio of 0%. The digging harvester achieved a digging ratio of 100% and a damage ratio of 1.2%, while the collector's damage ratio was 4.1%, loss ratio was 2.7%, and debris mixing ratio was 3.2%. The total working capacity of the mechanized system was 2.3 h/10a, significantly reducing 97.2% of labor time compared to manpower. These results indicate that the mechanization of onion harvesting can effectively reduce labor costs and increase work efficiency. Future research should include performance verification in various environments and an economic analysis of the mechanized system.

MEASUREMENT THE PATHS OF FARM MACHINERY USING AN OPTICAL WAVE RANGE FINDER

  • Shigeta, Kazuto;Chosa, Tadashi;Nagsaka, Yoshisada;Sato, Junichi
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.591-597
    • /
    • 1996
  • To straighten the path that farm machinery follows in paddy fields, it is necessary to measure and evaluate the tracks that these machines leave behind. However, there are no known methods for making such measurements and evaluations since it is difficult to accurately trace the paths that the machine make in paddy fields. Therefore, a measuring system has been developed which can accurately recored the path of a farm machinery in a field by measuring the horizontal straight-line distance from the side of the field to the machine. This system consists of a track subsystem on the machine and a range finder system. A measuring appraratus is installed on a flatcar which runs on rails over 50 m long at the side of the filed. The track subsystem uses a CCD camera to track the movement of the machine in the field which is following a lengthwise path. The range finder subsystem measures the distance that the measuring apparatus has traveled on the rails and the distance from the app ratus to the machine in the field. This system makes it possible to record the path that the machine travels. Even though differences in traveling distance arise between the measuring apparatus and the farm machine, these differences are detected by image processing , which allows the machine in the field to be located accurately. The short(0.05 second) time required for image processing is enough to follow an object . In the present study, this system was able to measure the path that a moving tractor makes. Even though a lag of up to 0.4 meters occurred, this system did not miss its target during operation of the track subsystem. Thus the path measuring system developed here is able to record vehicle paths automatically by following the movement of vehicles in the field and measuring the distance to them. It is expected to come into use in such applications as unmanned moving vehicle tests.

  • PDF

Recognition of Missing and Bad Seedings via Color Image Precessing (칼라 영상처리에 의한 결주 및 불량모 인식)

  • 손재룡;강창호;한길수;정성림;권기영
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.253-262
    • /
    • 2001
  • This study was conducted to develop the vision system of a robotic transplanter for plug-seedling. A color image processing algorithm was developed to identify and locate empty cells and bad plants in the seedling tray. The image of pepper and tomato seedling tray was segmented into regions of plants, frame and soil using threshold technique which utilized Q of YIQ for finding leaves and H of HSI for finding frame of tray in the color coordinate system. The recognition system was able to successfully identify empty cells and bad seeding and locate their two-dimensional locations. The overall success rate of the recognition system was about 99%.

  • PDF

Development of an Expert System for Mechanization of Entrusted Farming (위탁영농(委託營農)을 위한 기계화(機械化) 전문가 시스템 개발)

  • Chang, D.I.;Kim, S.R.;Kim, M.S.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.3
    • /
    • pp.258-273
    • /
    • 1994
  • In this study, an expert system named ESMEF (Expert System for Mechanized Entrusted Farming) was developed. The function of ESMEF is to provide the various data and informations for entrusted farming such as farm machinery management data, mechanization systems by farm sizes, number of units and sizes of machinery needed, machinery replacement analysis, mechanization costs analysis. Mechanization systems were selected by ESMEF for different farming sizes of Chungnam Province and an economic analysis was conducted as an example. The results showed that the farm machinery purchasing costs were 1,344~4,829 thousand won per ha and there was no significant difference for farm sizes above 60 ha. The total annual machinery costs were 3,595~4,537 thousand won per ha, and a minimum cost was appeared for farm size of l00ha at first. According to this analysis, an optimum entrusted farming size would be 100ha by the present available farm machinery systems.

  • PDF

Field Test for Regional Adaptability Improvement of Garlic Harvesting Mechanization Technology (마늘 수확 기계화 기술의 지역 적응성 시험)

  • Jea Keun Woo;Kyeong Sik Choi;Il Su Choi;Yong Choi;Seung Hwa Yu
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.107-114
    • /
    • 2023
  • Garlic is one of the major seasoned vegetables in Korea along with peppers and onions. Although it is a major cash crop, the aging population of farmers and rising labor and production costs are cited as the reasons for the decreasing production. Accordingly, it is necessary to introduce and spread garlic cultivation mechanization technology to reduce the input labor demand. In this study, conducted a field demonstration in Jeollanam-do using garlic harvesting machinery. In addition, it was intended to improve the mechanization rate of garlic harvesting by deriving factors that can apply to garlic harvesting machines in Jeollanam-do and investigating regional adaptability. As a result of the analysis, it was found that the harvesting performance of the garlic harvester and garlic collector in Jeollanam-do met the agricultural machine test standards. In addition, as a result of calculating the input effect of the mechanized work system compared to the conventional garlic harvesting work system, it was found that there was a labor-saving effect of 96.02%.

HEATING PERFORMANCE OF AIR SOURCE HEAT PUMP WITH HEAT REGENERATIVE DEVICE USING FIBER BELT

  • Ryou, Y.S.;Chang, J.T.;Kim, Y.J.;Kang, G.C.;Yun, J.H.;Lee, K.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.647-653
    • /
    • 2000
  • In this research the heat regenerative technology was employed to eliminate frosting on evaporator coil and improve COP of the heat pump system. This heat regenerative device(HRD) has very simple structure consisting a geared motor and a porous fiber belt passing through alternatively between cold and warm air duct. The laboratory test showed that the heat pump system with HRD yielded an impressive COP higher than 3.5 at the outside air temperature of $-7^{circ}C$ in heating mode.

  • PDF