• Title/Summary/Keyword: mechanisms and effects of drugs

Search Result 166, Processing Time 0.026 seconds

Cytotoxicity and Antitumor Effects of Insambaekhaptang on C57BL/6 Mice Melanoma-induced Lung Metastasis (인삼백합탕(人蔘百合湯)이 B16세포에 대한 세포독성능 및 C57BL/6계 생쥐의 폐전이암의 억제에 미치는 영향)

  • Hwang, Ho-Jun;Ha, Ji-Yong
    • THE JOURNAL OF KOREAN ORIENTAL ONCOLOGY
    • /
    • v.3 no.1
    • /
    • pp.85-98
    • /
    • 1997
  • Oriental medicine as a candidate for effective cancer treatment recently gain positive concerns in fields of therapeutic oncology. that is why some herbal medicines have been empirically safer in toxicity than anticancer drugs used in western medicine, and to show excellent therapeutic efficacy in human trial. Thus, these effects by clinically applied-herbs have not yet fully demonstrated in experimental tumor model. This study was initiated to evaluate the antitumor effect of Insambaekhaptang as candidate of antitumor-herbal agent against B16 melanoma metastasized into C57BL/6 mice lung. In experiment to test whether Insambaekhaptang can directly kill cancer cells in vitro or not, Insambaekhaptang showed direct killing action in concentration or higher against B16 melanoma cells using MTT assay, and showed lower IC50. Another experiment to know whether Insambaekhaptang can inhibit growth and metastasis of cancer cell or not, Insambaekhaptang significantly inhibited Solid tumor by intraperiperal injected-melanoma and lung metastasis induced by intravenous injected-melanoma in inbred C57BL/6 mice. When quantitative survival time increasing, we could obtain results that increased 113% in treated by Insambaekhaptang. These results show that Insambaekhaptang can inhibit growth of B16 melanoma cells through various biological mechanisms.

  • PDF

Modification of Endothelium on Contractile Response of Brain Vessels to Contracting Agents (혈관 수축제의 뇌혈관 수축반응에 대한 혈관근 내피세포의 역할)

  • Kook, Young-Johng;Baik, Yung-Hong;Kim, Jong-Keun;Choi, Bong-Kyu;Choi, Soo-Hyung;Kim, Yung-In
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.203-216
    • /
    • 1988
  • To delineate the mechanisms of vasoconstriction and vasodilation in cerebral arteries the effects of some vasoconstrictors and calcium antagonists on the basilar artery (BA) and arterial circle of Willis (WC) were examined and also the role of endothelium in the action of these drugs was investigated in pigs, cats and rabbits. In pig cerebral arteries, dose-dependent contractile responses were elicited by KCI, histamine, 5-hydroxytryptamine (5-HT) and angiotensin, but norepinephrine (NE), phenylephrine (PE) and epinephrine (EP) elicited dose-dependent contractions only under pretreatment with propranolol 10-6 M. The magnitudes of maximal contractile effects of these drugs were different from each other, and 5-H~ was the largest and angiotensin the smallest. Some calcium antagonists dose-dependently inhibited KCI (35 mM)-induced contraction and the order of potency in inhibiting the contraction was nifedipine > > diltiazem > flunarizine > oxybutynin > isosorbide dinitrate (ISDN) > glyceryl trinitrate. 5-HT (10-6 M)-induced contraction was dosedependently inhibited by nifedipine but slightly inhibited by diltiazem and ISDN. In rings with intact endothelium, KCI (35 mM)-induced contraction was not affected by acetylcholine (ACh) but $PGF_{2{\alpha}}$ (lO-SM)-induced contraction was dose-dependently relaxed by ACh and adenosine. This endothelium-dependent relaxation was not affected by nifedipine (l0-6M)-pretreatment but markedly inhibited by methylene blue (50,uM)-pretreatment. In the porcine arterial rings without endothelium, ACh had no effect or even contracted the $PGF_{2{\alpha}}-induced$ contraction. However, the dosedependent relaxing effect of ACh appeared when the deendothelized porcine ring and rabbit thoracic aorta with intact endotheli urn were simultaneously suspended into a bath and this relaxing effect was also inhibited by methylene blue-pretreatment. In cat cerebral arteries, 5-HT and NE elicited dose-dependent contractile responses and ACh also produced dose-dependent contraction regardless of the existence of endothelium. ACh-induced contraction was most prominent. 5-HT (IO-SM)induced contraction was not relaxed but contracted additionally by ACh even in the intact endothelial ring. In rabbit cerebral arteries, 5-HT and NE elicited dose-dependent contractile responses and 5-HT-induced contraction was more prominent. In the intact endothelial preparations, 5-HT (lO-s M)-induced contraction was markedly relaxed by the addition of ACh( IO-SM) and this endothelium-dependent relaxing effect was inhibited by atropine (l0-7M)-pretreatment but notaffected by diltiazem (l0-6M)-pretreatment. These results suggest that ACh elicits endotheliumdependent relaxing effect mediated by muscarinic receptors in cerebral arteries of pig and rabbit, and that ACh acts as vasoconstrictor in cat cerebral artery.

  • PDF

Senescence as A Consequence of Ginsenoside Rg1 Response on K562 Human Leukemia Cell Line

  • Liu, Jun;Cai, Shi-Zhong;Zhou, Yue;Zhang, Xian-Ping;Liu, Dian-Feng;Jiang, Rong;Wang, Ya-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6191-6196
    • /
    • 2012
  • Aims and Background: Traditional chemotherapy strategies for human leukemia commonly use drugs based on cytotoxicity to eradicate cancer cells. One predicament is that substantial damage to normal tissues is likely to occur in the course of standard treatments. Obviously, it is urgent to explore therapies that can effectively eliminate malignant cells without affecting normal cells. Our previous studies indicated that ginsenoside $Rg_1$ ($Rg_1$), a major active pharmacological ingredient of ginseng, could delay normal hematopoietic stem cell senescence. However, whether $Rg_1$ can induce cancer cell senescence is still unclear. Methods: In the current study, human leukemia K562 cells were subjected to $Rg_1$ exposure. The optimal drug concentration and duration with K562 cells was obtained by MTT colorimetric test. Effects of $Rg_1$ on cell cycle were analyzed using flow cytometry and by SA-${\beta}$-Gal staining. Colony-forming ability was measured by colony-assay. Telomere lengths were assessed by Southern blotting and expression of senescence-associated proteins P21, P16 and RB by Western blotting. Ultrastructural morphology changes were observed by transmission electron microscopy. Results: K562 cells demonstrated a maximum proliferation inhibition rate with an $Rg_1$ concentration of $20{\mu}\;mol{\cdot}L^{-1}$ for 48h, the cells exhibiting dramatic morphological alterations including an enlarged and flat cellular morphology, larger mitochondria and increased number of lysosomes. Senescence associated-${\beta}$-galactosidase (SA-${\beta}$-Gal) activity was increased. K562 cells also had decreased ability for colony formation, and shortened telomere length as well as reduction of proliferating potential and arrestin $G_2$/M phase after $Rg_1$ interaction. The senescence associated proteins P21, P16 and RB were significantly up-regulated. Conclusion: Ginsenoside $Rg_1$ can induce a state of senescence in human leukemia K562 cells, which is associated with p21-Rb and p16-Rb pathways.

Anti-diabetic effect of purple corn extract on C57BL/KsJ db/db mice

  • Huang, Bo;Wang, Zhiqiang;Park, Jong Hyuk;Ryu, Ok Hyun;Choi, Moon Ki;Lee, Jae-Yong;Kang, Young-Hee;Lim, Soon Sung
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.22-29
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Recently, anthocyanins have been reported to have various biological activities. Furthermore, anthocyanin-rich purple corn extract (PCE) ameliorated insulin resistance and reduced diabetes-associated mesanginal fibrosis and inflammation, suggesting that it may have benefits for the prevention of diabetes and diabetes complications. In this study, we determined the anthocyanins and non-anthocyanin component of PCE by HPLC-ESI-MS and investigated its anti-diabetic activity and mechanisms using C57BL/KsJ db/db mice. MATERIALS/METHODS: The db/db mice were divided into four groups: diabetic control group (DC), 10 or 50 mg/kg PCE (PCE 10 or PCE 50), or 10 mg/kg pinitol (pinitol 10) and treated with drugs once per day for 8 weeks. During the experiment, body weight and blood glucose levels were measured every week. At the end of treatment, we measured several diabetic parameters. RESULTS: Compared to the DC group, Fasting blood glucose levels were 68% lower in PCE 50 group and 51% lower in the pinitol 10 group. Furthermore, the PCE 50 group showed 2-fold increased C-peptide and adiponectin levels and 20% decreased HbA1c levels, than in the DC group. In pancreatic islets morphology, the PCE- or pinitol-treated mice showed significant prevention of pancreatic ${\beta}$-cell damage and higher insulin content. Microarray analyses results indicating that gene and protein expressions associated with glycolysis and fatty acid metabolism in liver and fat tissues. In addition, purple corn extract increased the phosphorylation of AMP-activated protein kinase (AMPK) and decreased phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6pase) genes in liver, and also increased glucose transporter 4 (GLUT4) expressions in skeletal muscle. CONCLUSIONS: Our results suggested that PCE exerted anti-diabetic effects through protection of pancreatic ${\beta}$-cells, increase of insulin secretion and AMPK activation in the liver of C57BL/KsJ db/db mice.

Early Activation of Apoptosis and Caspase-independent Cell Death Plays an Important Role in Mediating the Cytotoxic and Genotoxic Effects of WP 631 in Ovarian Cancer Cells

  • Gajek, Arkadiusz;Denel-Bobrowska, Marta;Rogalska, Aneta;Bukowska, Barbara;Maszewski, Janusz;Marczak, Agnieszka
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8503-8512
    • /
    • 2016
  • The purpose of this study was to provide a detailed explanation of the mechanism of bisanthracycline, WP 631 in comparison to doxorubicin (DOX), a first generation anthracycline, currently the most widely used pharmaceutical in clinical oncology. Experiments were performed in SKOV-3 ovarian cancer cells which are otherwise resistant to standard drugs such as cis-platinum and adriamycin. As attention was focused on the ability of WP 631 to induce apoptosis, this was examined using a double staining method with Annexin V and propidium iodide probes, with measurement of the level of intracellular calcium ions and cytosolic cytochrome c. The western blotting technique was performed to confirm PARP cleavage. We also investigated the involvement of caspase activation and DNA degradation (comet assay and immunocytochemical detection of phosphorylated H2AX histones) in the development of apoptotic events. WP 631 demonstrated significantly higher effectiveness as a pro-apoptotic drug than DOX. This was evident in the higher levels of markers of apoptosis, such as the externalization of phosphatidylserine and the elevated level of cytochrome c. An extension of incubation time led to an increase in intracellular calcium levels after treatment with DOX. Lower changes in the calcium content were associated with the influence of WP 631. DOX led to the activation of all tested caspases, 8, 9 and 3, whereas WP 631 only induced an increase in caspase 8 activity after 24h of treatment and consequently led to the cleavage of PARP. The lack of active caspase 3 had no outcome on the single and double-stranded DNA breaks. The obtained results show that WP 631 was considerably more genotoxic towards the investigated cell line than DOX. This effect was especially visible after longer times of incubation. The above detailed studies indicate that WP 631 generates early apoptosis and cell death independent of caspase-3, detected at relatively late time points. The observed differences in the mechanisms of the action of WP631 and DOX suggest that this bisanthracycline can be an effective alternative in ovarian cancer treatment.

Enhancing the Anti-cancer Activity of Non-steroidal Anti-inflammatory Drug and Down-regulation of Cancer Stemness-related Markers in Human Cancer Cells by DAPT and MHY2245 (DAPT 및 MHY2245의 비스테로이드소염제(NSAID)의 항암 활성 증강 및 종양줄기세포관련 표지자 발현 감소 활성에 대한 분자적 기전)

  • Moon, Hyun-Jung;Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.210-221
    • /
    • 2022
  • This study investigated the mechanisms underlying the anti-cancer effects of non-steroidal anti-inflammatory drugs (NSAIDs) in human cancer cells in combination with either N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor, or MHY2245, a new synthetic sirtuin 1 inhibitor. The results showed both DAPT and MHY2245 as novel chemosensitizers of human colon cancer KM12 and human hepatocellular carcinoma SNU475 cells to NSAIDs involving celecoxib and 2, 5-dimethyl celecoxib. The NSAID-induced cytotoxicity of these cells was significantly increased by DAPT and MHY2245 in a cyclooxygenase-2 independent manner. In addition, DAPT and MHY2245 reduced levels of p62, Notch1 intracellular domain, and multiple cancer stemness (CS)-related markers including Notch1, CD44, CD133, octamer-binding transcription factor 4, mutated p53 and c-Myc. However, the level of activating transcription factor 4 (ATF4) was enhanced, probably indicating the down-regulation of multiple CS-related markers by DAPT or MHY2245-mediated autophagy induction. Moreover, the NSAID-mediated reduction of p62/nuclear factor erythroid-derived 2-like 2 and CS-related marker proteins and the up-regulation of C/EBP homologous protein (CHOP)/ATF4 were accelerated by DAPT and MHY2245. As such, the combination of NSAID and either DAPT or MHY2245 resulted in higher cytotoxicity than NSAID alone by accelerating the down-regulation of multiple CS-related markers and PARP activation, indicating that both inhibitors promote NSAID-mediated autophagic cell death, possibly through the CHOP/ATF4 pathway. In conclusion, either combination strategy may be useful for the effective treatment of human cancer cells expressing CS-related markers.

Increased Cellular NAD+ Level through NQO1 Enzymatic Action Has Protective Effects on Bleomycin-Induced Lung Fibrosis in Mice

  • Oh, Gi-Su;Lee, Su-Bin;Karna, Anjani;Kim, Hyung-Jin;Shen, AiHua;Pandit, Arpana;Lee, SeungHoon;Yang, Sei-Hoon;So, Hong-Seob
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.4
    • /
    • pp.257-266
    • /
    • 2016
  • Background: Idiopathic pulmonary fibrosis is a common interstitial lung disease; it is a chronic, progressive, and fatal lung disease of unknown etiology. Over the last two decades, knowledge about the underlying mechanisms of pulmonary fibrosis has improved markedly and facilitated the identification of potential targets for novel therapies. However, despite the large number of antifibrotic drugs being described in experimental pre-clinical studies, the translation of these findings into clinical practices has not been accomplished yet. NADH:quinone oxidoreductase 1 (NQO1) is a homodimeric enzyme that catalyzes the oxidation of NADH to $NAD^+$ by various quinones and thereby elevates the intracellular $NAD^+$ levels. In this study, we examined the effect of increase in cellular $NAD^+$ levels on bleomycin-induced lung fibrosis in mice. Methods: C57BL/6 mice were treated with intratracheal instillation of bleomycin. The mice were orally administered with ${\beta}$-lapachone from 3 days before exposure to bleomycin to 1-3 weeks after exposure to bleomycin. Bronchoalveolar lavage fluid (BALF) was collected for analyzing the infiltration of immune cells. In vitro, A549 cells were treated with transforming growth factor ${\beta}1$ (TGF-${\beta}1$) and ${\beta}$-lapachone to analyze the extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT). Results: ${\beta}$-Lapachone strongly attenuated bleomycin-induced lung inflammation and fibrosis, characterized by histological staining, infiltrated immune cells in BALF, inflammatory cytokines, fibrotic score, and TGF-${\beta}1$, ${\alpha}$-smooth muscle actin accumulation. In addition, ${\beta}$-lapachone showed a protective role in TGF-${\beta}1$-induced ECM expression and EMT in A549 cells. Conclusion: Our results suggest that ${\beta}$-lapachone can protect against bleomycin-induced lung inflammation and fibrosis in mice and TGF-${\beta}1$-induced EMT in vitro, by elevating the $NAD^+$/NADH ratio through NQO1 activation.

Effects of Stress-Induced Sterile Inflammation on the Development of Depression (스트레스로 유발된 무균 염증이 우울증 발생에 미치는 영향)

  • Mi Kyoung Seo;Jung Goo Lee;Dae-Hyun Seog;Se Young Pyo;Won Hee Lee;Sung Woo Park
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.1062-1073
    • /
    • 2023
  • Although depression is a common psychiatric disorder that negatively affects individuals and societies, its exact pathogenesis is not well understood. Stress is a major risk factor for depression and is known to increase susceptibility by triggering inflammation. Indeed, many preclinical and clinical studies have suggested a strong link between depression and inflammation. Depression is associated with increased levels of pro-inflammatory cytokines, such as interleukin (IL-)1β, IL-6, IL-12, tumor necrosis factor-α, and interferon-γ, and decreased levels of the anti-inflammatory IL-4, IL-10, and transforming growth factor-β. Administering pro-inflammatory cytokines causes depression-like behaviors in rodents. Conversely, administering anti-inflammatory drugs appears to ameliorate depressive symptoms. Although the importance of inflammation as a mediator of depression has been demonstrated, the mechanisms by which inflammation is activated in depression remain unclear. To address this issue, recent studies have focused on the importance of stress-induced sterile inflammation. Sterile inflammation refers to the activation of inflammatory processes due to physical and/or psychological stress in the absence of pathogens. Stress promotes the release of endogenous factors known as damage-associated molecular patterns (DAMPs), thereby triggering sterile inflammation. In turn, DAMPs are recognized by pattern recognition receptors, leading to the production of pro-inflammatory cytokines. Here, we review the role of DAMPs in depression based on preclinical and clinical evidence on the dysregulation of sterile inflammation.

Deep Vein Thrombosis in Advanced Cervical Cancer Patient after Taking Cyclooxygenase-2 Selective Inhibitors (Cyclooxygenase-2 선택적 억제제를 복용 중 자궁암 환자에 발생한 심부정맥혈전증 1예)

  • Ko, Byung-Joon;Kim, Su-Hyun;Kim, Jeong-A;Hong, Jeong-Ik;Yoon, Do-Kyoung;Kim, Jung-Hwan;Sohn, Keun-Ju;Choi, Youn-Seon
    • Journal of Hospice and Palliative Care
    • /
    • v.8 no.1
    • /
    • pp.57-64
    • /
    • 2005
  • Cyclooxygenase-2 (COX-2) selective inhibitors were specifically developed to reduce the risks of gastrointestinal bleeding associated with other NSAID drugs. However, the APPROVe (Adenomatous Polyp Prevention on VIOXX) trials revealed that rofecoxib sometimes exerts prothrombotic effects. Meanwhile, cancer patients, who also carry a risk of thrombosis due to a variety of mechanisms, are often treated with COX-2 selective inhibitors, due to their relative gastrointestinal safety. This report concerns the case of a 46-year old woman with advanced cervical cancer, who had been treated with opioids and a COX-2 selective inhibitor (celecoxib) for 2 months, for the relief of pain associated with her cancer. The patient was admitted due to swelling of the left leg, which was also accompanied by pain. A computerized tomography scan revealed deep vein thrombosis occurring in multiple veins of both legs. After the administration of low-molecular weight heparin and oral warfarin, the patient's symptoms were relieved initially. However, her prothrombin time was found to be prolonged, necessitating the discontinuation of anticoagulation therapy. The patient's dyspnea worsened, ultimately resulting in her death. In conclusion, the administration of cox-2 selective inhibitors should be carefully considered in patients with a number of different risk factors, and assessed on a case-by-case basis.

  • PDF

Chemoprevention of Helicobacter pylori-associated Gastric Carcinogenesis in a Mouse Model; Is It Possible?

  • Hahm, Ki-Baik;Song, Young-Joon;Oh, Tae-Young;Lee, Jeong-Sang;Surh, Young-Joon;Kim, Young-Bae;Yoo, Byung-Moo;Kim, Jin-Hong;Ha, Sang-Uk;Nahm, Ki-Taik;Kim, Myung-Wook;Kim, Dae-Yong;Cho, Sung-Won
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.82-94
    • /
    • 2003
  • Although debates still exist whether Helicobacter pylori infection is really class I carcinogen or not, H. pylori has been known to provoke precancerous lesions like gastric adenoma and chronic atrophic gastritis with intestinal metaplasia as well as gastric cancer. Chronic persistent, uncontrolled gastric inflammations are possible basis for ensuing gastric carcinogenesis and H. pylori infection increased COX-2 expressions, which might be the one of the mechanisms leading to gastric cancer. To know the implication of long-term treatment of antiinflammatory drugs, rebamipide or nimesulide, on H. pylori-associated gastric carcinogenesis, we infected C57BL/6 mice with H. pylori, especially after MNU administration to promote carcinogenesis and the effects of the long-term administration of rebamipide or nimesulide were evaluated. C57BL/6 mice were sacrificed 50 weeks after H. pylori infection. Colonization rates of H. pylori, degree of gastric inflammation and other pathological changes including atrophic gastritis and metaplasia, serum levels and mRNA transcripts of various mouse cytokines and chemokines, and NF-${\kappa}B$ binding activities, and finally the presence of gastric adenocarcinoma were compared between H. pylori infected group (HP), and H. pylori infected group administered with long-term rebamipide containing pellet diets (HPR) or nimesulide mixed pellets (HPN). Gastric mucosal expressions of ICAM-1, HCAM, MMP, and transcriptional regulations of NF-${\kappa}B$ binding were all significantly decreased in HPR group than in HP group. Multi-probe RNase protection assay showed the significantly decreased mRNA levels of apoptosis related genes and various cytokines genes like IFN-$\gamma$, RANTES, TNF-$\alpha$, TNFR p75, IL-$1{\beta}$ in HPR group. In the experiment designed to provoke gastric cancer through MNU treatment with H. pylori infection, the incidence of gastric carcinoma was not changed between HP and HPR group, but significantly decreased in HPN group, suggesting the chemoprevention of H. pylori-associated gastric carcinogenesis by COX-2 inhibition. Long-term administration of antiinflammatory drugs should be considered in the treatment of H. pylori since they showed the molecular and biologic advantages with possible chemopreventive effect against H. pylori-associated gastric carcinogenesis. If the final concrete proof showing the causal relationship between H. pylori infection and gastric carcinogenesis could be obtained, that will shed new light on chemoprevention of gastric cancer, that is, that gastric/cancer could be prevented through either the eradication of H. pylori or lessening the inflammation provoked by H. pylori infection in high risk group.