• Title/Summary/Keyword: mechanical stability

Search Result 3,778, Processing Time 0.032 seconds

Stability Analysis of a Straight Pipe with Time Dependent Flow (내부에 변동하는 유동을 갖는 직선 파이프의 안정성 해석)

  • Hong, Sung-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.318-324
    • /
    • 2004
  • The stability of a simply supported straight pipe is investigated. The time dependent flow is assumed to vary harmonically about a constant mean velocity. Stability conditions and dynamic reponses of a governing equation are conducted by use of multiple scale mettled. Parametric resonances and combination resonances are investigated. Stability boundaries are analytically determined. The resulted stability conditions show that instabilities exist when the frequency of flow fluctuation is close to two times the natural frequency or to the sum of any two natural frequencies. In case that the fluctuated flow frequency is close to zero or to the difference of two natural frequencies, however, instabilities are not found up to the first order of perturbation. Stability charts are numerically Presented fir the first two vibration modes.

Study on Improving Stability of 6×6 Skid-Steering Vehicle by Employing Skyhook Control Method (스카이 훅 제어를 이용한 6×6 견마 차량의 주행 안정성 향상 방안 연구)

  • Jeon, Su-Hee;Lee, Jeong-Han;Yoo, Wan-Suk;Kim, Jae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.905-912
    • /
    • 2011
  • In order to protect equipment such as controllers, it is important to improve the driving stability of $6{\times}6$ skidsteering vehicles driven on rough roads. The estimation and improvement of the driving stability should be based on the vertical acceleration, roll acceleration, and pitch acceleration. These variables will be used to achieve multivariable control and increase the vehicle driving stability. In this study, to improve vehicle stability by reducing the vertical acceleration, roll angular acceleration, and pitch angular acceleration, the skyhook control method is employed to control MR(Magnetorheological) dampers equipped with the vehicle. The proposed control system is tested in multibody dynamic simulation.

A Study on an Atomization Model of a High-Pressurized Liquid Jet with a Stability Theory (안정성 이론을 이용한 고압 분사 액체 제트의 미립화 모델에 관한 연구)

  • Kim, Hong-Seok;Seong, Nak-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.811-818
    • /
    • 2001
  • The wave characteristics for a non-reacting high-speed liquid jet were investigated using a linear stability theory. In this study, 2-D incompressible viscid momentum equation for a liquid jet was considered, and the effects of injection parameters, such as Weber number, Reynolds number, and density ratio, on the wave characteristics were investigated. With the wavelength obtained from the stability analysis, the atomization model was suggested. The droplet sizes after breakup were determined by the wavelengths of fast growing waves, and the mass of the shed droplets was determined by the breakup time derived by ORouke et al. It was found that in comparison with measurements of diesel fuel spray, the results of calculation had a similar trend of the decrease of overall SMD with the increase of Reynolds number.

Exponential Stability of th PDAF with a Modified Riccati Equation a Cluttered Environment

  • Kim, Young-Shik;Hong, Keum-Shik
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.235-243
    • /
    • 2000
  • The probabilistic data association filter(PDAF) is known to provide better tracking performance than the standard Kalman filter(KF) in a cluttered environment. In this paper, the stability of the PDAF of Fortmann et al[7], in the presence of uncertainties with regard to the origin of measurement, is investigated. The modified Riccati equation derived by approximating two random terms with their expectations is used to prove the stability of the PDAF. A new Lyapunov function based approach, which is different from the quantitative evaluation of Li and Bar-Shalom[7], is pursued. With the assumption that the system and observation noises are bounded, specific tracking error bounds are established.

  • PDF

A Study on the Active Balancing for High-Speed Rotors (II): Control Stability and Application (고속 회전체의 능동 밸런싱에 관한 연구 (II): 제어 안정성과 응용)

  • Kim, Jong-Soo;Moon, Jong-Duk;Lee, Soo-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.147-153
    • /
    • 2002
  • In the preceding research, the active balancing device, which is an electro-magnetic type, has been developed and active balancing method using influence coefficient method is also proposed. The stability of active balancing control is studied in this paper. A stable condition for active balancing control is derived by estimating errors of influence coefficients. A gain scheduling control using influence coefficients of the reference model is proposed when dynamic characteristic of rotor system is changed. The stability of the balancing method is verified by experiments.

Evaluating Stability of a Transient Cut during Endmilling using the Dynamic Cutting Force Model

  • Seokjae Kang;Cho, Dong-Woo;Chong K. Chun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.67-75
    • /
    • 2000
  • virtual computer numerical control(VCNC) arises from the concept that one can experience pseudo-real machining with a computer-numerically-controlled(CNC) machine before actually cutting an object. To achieve accurate VCNC, it is important to determine abnormal behavior, such as chatter, before cutting. Detecting chatter requires an understanding of the dynamic cutting force model. In general, the cutting process is a closed loop system the consists of structural and cutting dynamic. Machining instability, namely chatter, results from the interaction between these two dynamics. Several previous reports have predicted stability for a single path, using a simple cutting force model without run out and penetration effects. This study considers both tool run out and penetration effects, using experimental modal analysis, to obtain predictions that are more accurate. The machining stability during a corner cut, which is a typical transient cut, was assessed from an evaluation of the cutting configurations at the corner.

  • PDF

Formation Geometry Center based Formation Controller Design using Lyapunov Stability Theorem

  • Lee, Ji-Eun;Kim, Hyeong-Seok;Kim, You-Dan;Han, KiHoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.71-78
    • /
    • 2008
  • New formation flight controller for unmanned aerial vehicles is proposed. A behavioral decentralized control approach called formation geometry center control is adopted. Trajectory tracking as well as formation geometry keeping are the purpose of the formation flight, and therefore two controllers are designed: a trajectory tracking controller for reference trajectory tracking, and a position controller for formation geometry keeping. Each controller is designed using Lyapunov stability theorem to guarantee the asymptotic stability. Formation flight controller is finally obtained by combining the trajectory tracking controller and the formation geometry keeping controller using a weighting parameter that depends on the relative distance error between unmanned aerial vehicles. Numerical simulations are performed to validate the performance of the proposed controller.

Control Performance Comparison of Model-referenced and Map-based Control Method for Vehicle Lateral Stability Enhancement (차량 횡방향 안정성 향상을 위한 모델 참조 제어와 맵기반 제어 방법의 제어 성능 비교)

  • Yoon, Moonyoon;Baek, Seunghwan;Choi, Jungkwang;Boo, Kwangsuck;Kim, Heungseob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.253-259
    • /
    • 2014
  • This study proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-referenced control uses the sliding mode method to determine the compensated yaw moment; in contrast, the proposed map-based control uses the compensated yaw moment map acquired by vehicle stability analysis. The vehicle stability region is calculated by a topological method based on the trajectory reversal method. The performances of model-referenced control and map-based control are compared under various road conditions and driving inputs. Model-referenced control uses a control input to satisfy the linear reference model, and it generates unnecessary tire lateral forces that may lead to worse performance than an uncontrolled vehicle with step steering input on a road with low friction coefficient. The simulation results show that map-based control provides better stability than model-referenced control.

Dynamic Analysis of an Automatic Ball Balancer with Triple Races (삼중레이스를 갖는 자동평형장치의 동적 해석)

  • Jwa, Seong-Hun;Jo, Eun-Hyeong;Son, Jin-Seung;Park, Jun-Min;Jeong, Jin-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.764-774
    • /
    • 2002
  • Dynamic behaviors are analyzed for an automatic ball balancer (ABB) with triple races, which is a device to reduce the unbalanced mass of optical disk drives (ODD) such as CD-ROM or DVD drives. The nonlinear equations of motion are derived by using Lagrange's equations with the polar coordinate system. It is shown that the polar coordinate system provides the complete stability analysis while the rectangular coordinate system used in other previous studies has limitations on the stability analysis. For the stability analysis, the equilibrium positions and the linearized perturbation equations are obtained by the perturbation method. Based on the linearized equations, the stability of the system is analyzed around the equilibrium positions; furthermore, to confirm the stability, the time responses for the nonlinear equations of motion are computed by using a time integration method and experimental analyses are performed. Theoretical and experimental results show a superiority of the ABB with triple races.

Development of New Prototype of Mechanical Quality Assurance for Clinical Linear Accelerator (의료용 선형가속기의 기계적 점검을 위한 새로운 정도관리 프로토콜의 개발)

  • 윤형근;신교철;김기환;오영기;김진기;정동혁;김정기;조문준;박인규
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.109-113
    • /
    • 2002
  • In recent years, the radiotherapy equipment has become much more sophisticated, and with the complication comes an increased set of quality assurance (QA) responsibilities. Today's computer controlled linear accelerator requiring QA of not only the radiation integrity, but also the mechanical accuracy of the linear accelerator. The existing QA sheets are adequate for acceptance testing and commissioning but those sheets are somewhat descriptive form for routine QA. establishing the QA sheets for a facility are more efficient if the sheets could estimate the long-term stability for the result of QA. We are going to develope new prototype of mechanical QA sheet to visualize and to verify long-term stability of mechanical QA for clinical linear accelerator. The items included in mechanical QA sheet were 1) gantry rotation, 2) collimator rotation, 3) couch rotation, 4) optical distance indicator (ODI), and 5) laser alignment. We compared new prototype sheet with conventional sheet for several hospitals in Korea for those items. The QA acceptance criteria in this study mainly followed published recommendations. The contents of test for mechanical QA are the following. Confirm that the digital and/or mechanical gantry angle readouts are correct. Verify that digital and/or mechanical readouts of collimator angle agree with the true angle, as determined with the protractor. Measure the light field using a graph paper and compare with the digital readouts. Confirm digital readout accuracy. Verify that the sagittal laser, the left and right lasers, and the ceiling laser intersect at the isocenter. In the design of new QA sheet, we emphasized the representation of the long-term stability of mechanical QA by using Excel program. By using the new prototype QA sheet, we simplified and visualized the mechanical QA process, and could estimate the long-term stability of mechanical error of linear accelerator.

  • PDF