• 제목/요약/키워드: mechanical resonance

검색결과 757건 처리시간 0.044초

저아음속 유동에 놓여진 개방형 공동의 공력소음 특성 (Aeroacoustic Characteristics of Cavity Resonance on Very Low Subsonic Flows)

  • 고성룡;문영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1921-1926
    • /
    • 2004
  • The tone generation mechanism and aeroacoustic characteristics have been investigated for flow over open cavities using direct acoustic numerical simulations. Physically the tone generation mechanism of open cavity is more complicated when flow instabilities are excited by the correlation effects of flow parameters. From non-dimensional parameter studies in very low Mach number range, it is shown that characteristics of cavity resonance inherently involve typical acoustic pattern at each discrete tone frequency, and especially in laminar flow the fundamental tone frequency is determined within flow instability criterion of laminar shear layer as well as cavity geometry, length to depth ratio.

  • PDF

원호형 압전 변환기의 공진 특성 (Resonance Characteristics of a Piezoelectric Sheel Transducer)

  • 김대승;김진오
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.332-335
    • /
    • 2007
  • This paper presents a theoretical approach to describe the vibration characteristics of a piezoelectric shell transducer. Governing equations for the motion of the piezoelectric shell are classified and simplified according to the boundary conditions. Applied mechanical and electrical boundary conditions have yielded each characteristic equation for circumferential, longitudinal, and radial motions of the piezoelectric shell transducer. Theoretical calculations of the resonance frequencies have been compared with the results obtained by the experiment and have shown a good agreement.

  • PDF

초음파 용접 시스템 설계에 관한 연구 (A Study on Ultrasonic Welding System Design)

  • 홍정표;정승환;원태현;권순재
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.164-166
    • /
    • 2008
  • Ultrasonic welder joins with a horn and a booster for amplification of the mechanical displacement. This coupling generates other resonance points at a frequency range lower than the piezoelectric material's resonance frequency. Therefore, frequency variation range through PLL control was proposed in order to prevent reaction to these resonance points.

  • PDF

보일러 튜브군의 음향공진 회피를 위한 음향배플의 위치에 따른 FEM 음향모드해석 (FEM acoustic modal analysis due to location of acoustic baffles to avoid acoustic resonance in the tube bank of boiler for power plant)

  • 안성종;주영호;김철홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.150-154
    • /
    • 2012
  • A flow induced mechanical vibration and acoustic resonance should be considered at design stage because they are mainly occurred in the tube bank of boiler. Acoustic resonance is occurred when the vortex shedding frequency of tube bank coincides with the acoustic natural frequency of the cavity. Effective solution to avoid acoustic resonance is installing acoustic baffles in the tube banks parallelly inside of the flow cavity. Thus, location and number of acoustic baffles should be exactly calculated to eliminate the acoustic resonance. This paper presents case study of acoustic resonance due to inappropriate number and location of acoustic baffles. Measured frequency and mode in the study is verified by FEM acoustic modal analysis. The number and location of acoustic baffles to avoid acoustic resonance are calculated by using FEM acoustic modal analysis.

  • PDF

내부공진을 가진 원판의 비선형 강제진동해석 (Nonlinear Analysis of a Forced Circular Plate with Internal Resonance)

  • 김철홍;이원경
    • 대한기계학회논문집
    • /
    • 제16권11호
    • /
    • pp.2098-2110
    • /
    • 1992
  • 본 연구에서는 중간평면의 비선형 신장을 고려한 원판의 강제진동을 해석하기 위해 Fig.1과 같은 경계조건 즉 꺽쇠로 고정된(clamped) 경우를 생각한다.이 경우 에 고유진동수 사이엔 .omega.$_{1}$+2.omega.$_{2}$=.omega.$_{3}$의 관계가 존재하는데 이 관계가 내부공진 조건이 됨이 입증된다. 원판에 작용하는 가진력으로는 조화가진을 가정하 고 가진진동수가 2.omega.$_{1}$+.omega.$_{2}$에 가까운 경우 즉 조합공진(combination reso- nance)일 때를 고려한다.

Stability/instability of the graphene reinforced nano-sized shell employing modified couple stress model

  • Yao, Zhigang;Xie, Hui;Wang, Yulei
    • Wind and Structures
    • /
    • 제32권1호
    • /
    • pp.31-46
    • /
    • 2021
  • The current research deals with, stability/instability and cylindrical composite nano-scaled shell's resonance frequency filled by graphene nanoplatelets (GPLs) under various thermal conditions (linear and nonlinear thermal loadings). The piece-wise GPL-reinforced composites' material properties change through the orientation of cylindrical nano-sized shell's thickness as the temperature changes. Moreover, in order to model all layers' efficient material properties, nanomechanical model of Halpin-Tsai has been applied. A functionally modified couple stress model (FMCS) has been employed to simulate GPLRC nano-sized shell's size dependency. It is firstly investigated that reaching the relative frequency's percentage to 30% would lead to thermal buckling. The current study's originality is in considering the multifarious influences of GPLRC and thermal loading along with FMCS on GPLRC nano-scaled shell's resonance frequencies, relative frequency, dynamic deflection, and thermal buckling. Furthermore, Hamilton's principle is applied to achieve boundary conditions (BCs) and governing motion equations, while the mentioned equations are solved using an analytical approach. The outcomes reveal that a range of distributions in temperature and other mechanical and configurational characteristics have an essential contribution in GPLRC cylindrical nano-scaled shell's relative frequency change, resonance frequency, stability/instability, and dynamic deflection. The current study's outcomes are practical assumptions for materials science designing, nano-mechanical, and micromechanical systems such as micro-sized sensors and actuators.

Parametric resonance of a spinning graphene-based composite shaft considering the gyroscopic effect

  • Neda Asadi;Hadi Arvin;Yaghoub Tadi Beni;Krzysztof Kamil Zur
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.457-471
    • /
    • 2024
  • In this research, for the first time the instability boundaries for a spinning shaft reinforced with graphene nanoplatelets undergone the principle parametric resonance are determined and examined taking into account the gyroscopic effect. In this respect, the extracted equations of motion in our previous research (Ref. Asadi et al. (2023)) are implemented and efficiently upgraded. In the upgraded discretized equations the effect of the Rayleigh's damping and the varying spinning speed is included that leads to a different dynamical discretized governing equations. The previous research was about the free vibration analysis of spinning graphene-based shafts examined by an eigen-value problem analysis; while, in the current research an advanced mechanical analysis is addressed in details for the first time that is the dynamics instability of the aforementioned shaft subjected to the principal parametric resonance. The spinning speed of the shaft is considered to be varied harmonically as a function of time. Rayleigh's damping effect is applied to the governing equations in order to regard the energy loss of the system. Resorting to Bolotin's route, Floquet theory and β-Newmark method, the instability region and its accompanied boundaries are defined. Accordingly, the effects of the graphene nanoplatelet on the instability region are elucidated.

모드해석을 통한 마운트 공진회피 설계 (Design for Resonance Avoidance of Mount Through the Modal Analysis)

  • 이종명;유현탁;박규진;최현철;최병근
    • 한국소음진동공학회논문집
    • /
    • 제25권7호
    • /
    • pp.481-486
    • /
    • 2015
  • This paper provides how to solve the problems analytically and experimentally that occur for testing the water injection pump under development. First of all, water injection pump, based on shaft system dynamic analysis, is verified by measuring the behavior of the shaft system. After the water injection pump is measured, the structural resonances which can cause excessive noise, degradation the equipment life and malfunction are found. Therefore, by changing the structural design, the reso- nance should be avoided. Application of the design variables to the experimentally resonance avoid- ance is difficult. So analytically, with application of the design variables, the design will be changed with mode analysis using FEM.

Nonlinear response of a resonant viscoelastic microbeam under an electrical actuation

  • Zamanian, M.;Khadem, S.E.;Mahmoodi, S.N.
    • Structural Engineering and Mechanics
    • /
    • 제35권4호
    • /
    • pp.387-407
    • /
    • 2010
  • In this paper, using perturbation and Galerkin method, the response of a resonant viscoelastic microbeam to an electric actuation is obtained. The microbeam is under axial load and electrical load. It is assumed that midplane is stretched, when the beam is deflected. The equation of motion is derived using the Newton's second law. The viscoelastic model is taken to be the Kelvin-Voigt model. In the first section, the static deflection is obtained using the Galerkin method. Exact linear symmetric mode shape of a straight beam and its deflection function under constant transverse load are used as admissible functions. So, an analytical expression that describes the static deflection at all points is obtained. Comparing the result with previous research show that using deflection function as admissible function decreases the computation errors and previous calculations volume. In the second section, the response of a microbeam resonator system under primary and secondary resonance excitation has been obtained by analytical multiple scale perturbation method combined with the Galerkin method. It is shown, that a small amount of viscoelastic damping has an important effect and causes to decrease the maximum amplitude of response, and to shift the resonance frequency. Also, it shown, that an increase of the DC voltage, ratio of the air gap to the microbeam thickness, tensile axial load, would increase the effect of viscoelastic damping, and an increase of the compressive axial load would decrease the effect of viscoelastic damping.

Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators

  • Ajri, Masoud;Rastgoo, Abbas;Fakhrabadi, Mir Masoud Seyyed
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.623-637
    • /
    • 2019
  • This paper analyzes the non-stationary vibration and super-harmonic resonances in nonlinear dynamic motion of viscoelastic nano-resonators. For this purpose, a new coupled size-dependent model is developed for a plate-shape nano-resonator made of nonlinear viscoelastic material based on modified coupled stress theory. The virtual work induced by viscous forces obtained in the framework of the Leaderman integral for the size-independent and size-dependent stress tensors. With incorporating the size-dependent potential energy, kinetic energy, and an external excitation force work based on Hamilton's principle, the viscous work equation is balanced. The resulting size-dependent viscoelastically coupled equations are solved using the expansion theory, Galerkin method and the fourth-order Runge-Kutta technique. The Hilbert-Huang transform is performed to examine the effects of the viscoelastic parameter and initial excitation values on the nanosystem free vibration. Furthermore, the secondary resonance due to the super-harmonic motions are examined in the form of frequency response, force response, Poincare map, phase portrait and fast Fourier transforms. The results show that the vibration of viscoelastic nanosystem is non-stationary at higher excitation values unlike the elastic ones. In addition, ignoring the small-size effects shifts the secondary resonance, significantly.