• Title/Summary/Keyword: mechanical resistance

Search Result 4,111, Processing Time 0.041 seconds

Effect of Organoclay and Blends on the Abrasion Resistance and Mechanical Properties of Poly(styrene-block-butadiene-block-styrene)

  • Kim, Ji-Hoo;Kim, Gue-Hyun
    • Journal of Environmental Science International
    • /
    • v.22 no.6
    • /
    • pp.687-694
    • /
    • 2013
  • To investigate organoclay, high styrene resin masterbatch (HSR), high impact polystyrene (HIPS), and polystyrene (PS) as reinforcing materials for the improvement of the abrasion resistance of poly(styrene-block-butadiene-block-styrene) (SBS), SBS/organoclay nanocomposites, SBS/HSR, SBS/HIPS, and SBS/PS blends were prepared. The effect of organoclay and blends on the abrasion resistance and mechanical properties of SBS was investigated. Even though intercalations of organoclay are observed for SBS/Cloisite 20A nanocomposites and not for SBS/Cloisite 30B composites, the abrasion resistance of SBS/Cloisite 20A nanocomposites is worse than that of SBS/Cloisite 30B composites. When SBS was blended with HSR, HIPS and PS, the abrasion resistance of the blends increases with increasing of HSR, HIPS and PS content from 0 to 20 wt%.

Evaluation of Weldability on the Resistance Spot Welding of DP60 Steels for Automotive Chassis (자동차 새시용 DP60강 인버터 DC 저항 점용접의 용접성 평가)

  • Kim, I.J.;Oh, I.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.143-148
    • /
    • 2011
  • This study analyzes the resistance spot weldability of DP60 steels. To analyze the resistance spot weldability of DP60 steels, tensile strength test and macro-section test were conducted for the resistance spot welds. Acceptable welding conditions were determined as a function of the resistance spot welding process parameters such as electrode force, welding time, and welding current. The lower limit of the welding lobe was the minimum shear tension strength for 590MPa-grade steel while the upper limit was determined whether or not expulsion was detected.

The Performance Test on Me-DLC Films for Improving Wear Resistance of LM-Guide (LM 가이드의 내마모성 향상을 위한 Me-DLC 코팅박막의 성능평가)

  • Kang, Eun-Goo;Lee, Dong-Yoon;Kim, Seong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.409-416
    • /
    • 2012
  • Recently, surface modification technology is of importance to improve the wear resistance and the corrosive resistance for high accurate mechanical parts such as LM guide, Ball Screw and Roller Bearing etc., Those has generally featured on rolling contact mechanism to improve not only the wear and the friction, but also the accuracy and the corrosion performances. For surface modifications of high accurate mechanical parts, normally thermal spray, PVD, CVD and E.P. processes have been used with many materials such as DLC, raydent, W, Ni, Ti etc. Diamondlike carbon (DLC) films possess a combination of attractive properties and have been largely employed to modify the tribological behaviors such as friction, wear, corrosion, fretting fatigue, biocompatibility, etc. However, for rolling contact mechanism mechanical parts DLC films are needed to study for commercial benefit. Rolling contact mechanism has features on effects of cyclic motions and stresses, and also not simply sliding motions. The papers focused on the performance test of wear and corrosive resistance according to Me-DLC film thickness. And also, its thickness effect of wear analysis was carried out through the simulation of the maximum shear stress under the rolling contact surface. As the results, Me-DLC films have more potential to improve the wear resistance for high precision mechanical parts than raydent films.

Mechanical and Microestructural Properties of Titanium Matrix Composites Reinforced by TiN Particles

  • Romero, F.;Amigo, V.;Salvador, M.D.;Martinez, E.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1026-1029
    • /
    • 2006
  • Particulate reinforced titanium composites were produced by PM rout. Differents volumetric percentages of TiN reinforcements were used, 5,10,15 vol%. Samples were uniaxial pressed and vacuum sintered at differents temperatures between $1200-1300^{\circ}C$. Density, porosity, shrinkage, mechanical properties and microstructure were studied. Elastic properties and strength resistance were analysed by flexural strength and tension tests, and after the test, fractured samples were analysed too, obtaining a correlation between the fracture, interparticulated or intraparticulated, and the reinforcement addition.. Hardness and microhardness test were applied too, in order to complete the study about mechanical properties. In order to study wear resistance pin-on-disc test were used. In addition, the temperature influence, the reactivity between matrix and reinforcement, and the microstructures developed were observed by optical and electron microscopy.

  • PDF

Cutting Performance of Submicron Cermet Tools and Their Mechanical Properties (초미립 서멧 절삭공구의 절삭성능과 기계적 특성)

  • Ahn, Dong-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.182-189
    • /
    • 2001
  • TiCN based submicron cermet and similar ISO grad of the conventional cermets with TiCN of different particle size were produced by PM process, and their microstructure, mechanical properties and cutting performance were compared. The microstructure of submicron cermet was more homogeneous and showed much finer microstructure, resulting in better hardness and fracture toughness. The submicron cermet tools achieved excellent cutting performance such as wear resistance and toughness in comparison with two grades of the conventional cermets in millimg test. The relationship between microstrucure, mechanical properties and cutting performance of these cermet tools was discussed. The submicron cermet tools revealed for their potential to wide application range and interrupt cutting because of their superior wear resistance and toughness combinations.

  • PDF

Dynamic Model for Electrode Expansion in Resistance Spot Welding Machines (저항점 용접에서 전극팽창에 관한 동적모델)

  • Shah, Syed Asad Ullah;Chang, Hee-Seok
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.94-101
    • /
    • 2011
  • A lumped mass damped vibratory model was proposed for quantitative understanding of welding machine characteristics. An experimental setup was developed to determine the mechanical parameters (moving mass m, equivalent stiffness k and damping c) which govern the dynamic mechanical response of the resistance spot welding machine. During the test, acceleration of the electrodes for each level of applied load was measured by accelerometer, filtered and numerically integrated to find the corresponding velocity and displacement. The machine dynamic parameters were determined by finding the unknowns of the proposed model with experimental data. A Simulink model was proposed to investigate the influence of these mechanical parameters on the welding process. The electrode response was simulated by changing values of stiffness and damping. It was observed that both of the machine parameters(c, k) have significant effect on the response of electrode head.

Mechanical Characteristic Evaluation of Proper Material for Ultra-fine Dies (초소형 금형소재의 기계적 특성평가)

  • KANG Jae-hoon;LEE Hyun-yong;LEE Nak-kyu
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.473-476
    • /
    • 2005
  • Today's manufacturing industry is facing challenges from advanced difficult-to-machine materials (WC-Co alloys, ceramics, and composites), stringent design requirements (high precision, complex shapes, and high surface quality), and machining costs. Advanced materials play an increasingly important role in modem manufacturing industries, especially, in aircraft, automobile, tool, die and mold making industries. The greatly-improved thermal, chemical, and mechanical properties of the material (such as improved strength, heat resistance, wear resistance, and corrosion resistance), while having yielded enormous economic benefits to manufacturing industries through improved product performance and product design, are making traditional machining processes unable to machine them or unable to machine them economically. In this paper, mechanical characteristic evaluation test of fine powder type WC-Co alloy was accomplished to obtain clear data for miniaturized special die parts machining with high reliability and high quality.

  • PDF

A Study on temperature behavior of pulsating heat pipe with different diameter in evaporator (증발부 내경 변화에 따른 진동형 히트파이프의 온도 거동에 관한 연구)

  • Kim, Jihoon;Park, Chulwoo;Shah, Syed Abdullah;Kim, Daejoong
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.10-18
    • /
    • 2019
  • In this study, the temperature behavior of Pulsating Heat Pipe (PHP) according to the diameter change were studied by limiting the diameter change to only the evaporator. To investigate operation of PHP in various heat input, heat input power was increased from 10 to 120 W. The results show operation can be divided into 3 regimes by temperature behavior. Thermal resistance was increased before start-up and decreased with increasing heat input. At 110 W heat input, thermal conductivity of 2 mm PHP was 8 .times higher compare to thermal conductivity of copper. Further, to investigate details of temperature behavior in higher heat input, FFT analysis was conducted. Based on the results, when the deviation of peak frequency in each section is lowest, the thermal resistance has lowest value.

A Study on the Corrosion Characteristics of Gear Steel by Shot Peening (쇼트피닝에 의한 기어강의 부식특성에 관한 연구)

  • Kang, Jin-Shik;Kim, Tae-Hyung;Yoon, Jong-Ku;Cheong, Seong-Kyun;Lee, Seung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.216-221
    • /
    • 2001
  • The surface treatment technique to increase corrosion resistance is very important in mechanical components of structures. Therefore, this paper investigates the effects of shot peening on the corrosion resistance of SCM 420steel. The results show that the surface compressive residual stress largely increases, which cause the increase of corrosion resistance.

  • PDF

Estimation of setting times of concrete using piezoelectric sensor (압전센서를 이용한 콘크리트의 응결시간 추정)

  • Lee, Jun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.99-100
    • /
    • 2021
  • In this study, the setting times of concrete was evaluated using the electro-mechanical (EMI) behavior of piezoelectric sensor embedded in the concrete. Penetration resistance test was also performed to compare with EMI sensing technique. As a result, the setting times of concrete can be measured more effectively than penetration resistance test through the EMI sensing technique using the piezoelectric sensor.

  • PDF