• Title/Summary/Keyword: mechanical pencil

Search Result 32, Processing Time 0.024 seconds

An Experimental Study of the Performance Characteristics with Four Different Rotor Blade Shapes on a Small Mixed-Type Turbine

  • Cho Soo-Yong;Cho Tae-Hwan;Choi Sang-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1478-1487
    • /
    • 2005
  • A small mixed-type turbine with a diameter of 19.9 mm has been substituted for a rotational part of pencil-type air tool. Usually, a vane-type rotor is applied to the rotational part of the air tool. However, the vane-type rotor has some problems, such as friction, abrasion, and necessity of accurate assembly etc.,. These problems make the life time of the vane-type air tool short, but air tools operated by mixed-type turbines are free of friction and abrasion because the turbine rotor dose not contact with the casing. Moreover, it is assembled easily because of no axis offset. These characteristics are merits for using air tools, but loss of power is inevitable on a non-contacting type rotor due to flow loss, tip clearance loss, and profile loss etc.,. In this study, four different rotors are tested, and their characteristics are investigated by measuring the specific output power. Additionally, optimum nozzle location against the rotor is studied. Output powers are obtained through measured pressure, temperature, torque, rotational speed, and flow rate. The experimental results obtained with four different rotors show that the rotor blade shape greatly influences to the performance, and the optimum nozzle location exists near the mid span of the rotor.

Acoustic Emission of Heat Treated Compacted Graphite Iron under 873~1173 K (873~1173 K에서 열처리된 강화흑연강(Compacted Graphite Iron, CGI)의 음향방출 특성)

  • Nam, Ki-Woo;Ahn, Byung-Kun;Lee, Soo-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.415-421
    • /
    • 2013
  • CGI is gaining popularity in applications that require either greater strength, or lower weight than cast iron. Recently, compacted graphite iron has been used for diesel engine blocks, turbo housings and exhaust manifolds. This paper were assessed acoustic emission characteristics according to the mechanical properties change of degraded CGI340 during 1-24 hours at 873~1173 K. In results of pencil lead fracture test, the dominant frequency and the velocity of base metal were 97 kHz and 5490 m/sec, respectively. The base metal in a tensile test was obtained relatively high dominant frequency. However, the heat treated materials, the longer the heat treatment time, the higher the heat treatment temperature, were obtained in the area of lower frequencies. This phenomenon appears by long-term use.

Evaluation of the effect of mechanical deformation on beam isocenter properties of the SC200 scanning beam delivery system

  • Wang, Ming;Zheng, Jinxing;Song, Yuntao;Li, Ming;Zeng, Xianhu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2064-2071
    • /
    • 2020
  • For proton pencil beam scanning (PBS) technology, the accuracy of the dose distribution in a patient is sensitive to the properties of the incident beam. However, mechanical deformation of the proton therapy facility may occur, and this could be an important factor affecting the proton dose distribution in patients. In this paper, we investigated the effect of deformation on an SC200 proton facility's beam isocenter properties. First, mechanical deformation of the PBS nozzle, L-shape plate, and gantry were simulated using a Finite Element code, ANSYS. Then, the impact of the mechanical deformation on the beam's isocenter properties was evaluated using empirical formulas. In addition, we considered the simplest case that could affect the properties of the incident beam (i.e. if only the bending magnet (BG3) has an error in its mounting alignment), and the effect of the beam optics offset on the isocenter characteristics was evaluated. The results showed that the deformation of the beam position in the X and Y direction was less than 0.27 mm, which meets the structural design requirements. Compared to the mechanical deformation of the L-shape plate, the deformation of the gantry had more influence on the beam's isocenter properties. When the error in the mounting alignment of the BG3 is equal to or more than 0.3 mm, the beam deformation at the isocenter exceeds the maximum accepted deformation limits. Generally speaking, for the current design of the SC200 scanning beam delivery system, the effects of mechanical deformation meet the maximum accepted beam deformation limits. In order to further study the effect of the incident beam optics on the isocenter properties, a fine-scale Monte Carlo model including factors relating to the PBS nozzle and the BG3 should be developed in future research.

Evaluation of Mechanical Properties of Ceramic Coating Layers with Nano-sized Silicon Oxides on a Steel Sheet

  • Baik, Youl;Kang, Bo K.;Choi, Yong;Yang, So E.;Lee, Jong J.;Kim, Byung D.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.85-85
    • /
    • 2013
  • A ceramic coating material with nano-sized silicon oxide on AISI 4340 steel for a thermal conductor at a high temperature was analyzed to find an optimum coating process. Average surface roughness of the coating layers prepared by dipping process was about $5.26{\mu}m$. Potassium silicate addition as a binder of the coating material tended to improve its hardness. A pencil scratch hardness testing showed that a loading more than 800 g made fragments of the coating layer.

  • PDF

The Coating Performance of UV Curable Urethane Acrylate Coatings for Fancy Veneer Overlayed Plywood Flooring

  • Lee, Byoung-Hoo;Kim, Hyun-Joong;Lee, Young-Kyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.23-35
    • /
    • 2004
  • The goal of study was to investigate the influence of the acrylated urethane oligomer on mechanical properties, the chemical resistance and thermal resistance of the UV curable urethane acrylate coatings for fancy veneer overlayed plywood flooring. The pencil hardness and abrasion resistance of the coated fancy veneer overlayed plywood floorings increased with increasing the acrylate functionality of the acrylated urethane oligomer. In the case of the UV cured film containing hexa-functional acrylated aliphatic urethane oligomer, high discoloration of the coated fancy veneer overlayed plywood flooring was observed near the cracks at the beginning of the chemical treatment. In this study, it was found that the degradation of the UV cured film caused by an alkaline reagent was higher than that of the UV cured film caused by an acidic treatment.

Preparation of the Anti-Reflective(AR) Coating Film by Sol-Gel Method to Improve the Efficiency of Solar Cell (태양전지 효율 향상용 졸-겔 법에 의한 반사방지 코팅막의 제조)

  • Kim, Hyosub;Kim, Youngho;Choi, Jaeyune
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.145-150
    • /
    • 2014
  • This study investigates the preparation of anti-reflective (AR) coating film to improve the efficiency of solar cell. The AR coating film was successfully obtained by dip-coating with AR coatings prepared by sol-gel method. Fluoroalkylsilane was additionally introduced into the coatings to give the self-cleaning effect of AR coating film. We performed the abrasion test, pencil scratch hardness test and cross-cut test to identify the mechanical strength of AR coating film. As the results, the transmittance of AR coating films with 9.07, 18.13 and 27.20 of IPA/MTMS molar ratios were 93.1, 93.6 and 95.3%, respectively. The water contact angle and transmittance of AR coating film increased by the introduction of hydrophobicity. The prepared AR coating film shows the high level of abrasion, hardness and adhesion. The IPA/MTMS molar ratio of 27.20 and the withdrawing speed range of 0.20 ~ 0.28cm/sec are the optimal coating condition in terms of the transmittance and mechanical strength of AR coating film.

High rate deposition and mechanical properties of SiOx film on PET and PC polymers by PECVD with the dual frequencies UHF and HF at low temperature

  • Jin, Su-B.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.180-180
    • /
    • 2010
  • The design and implementation of high rate deposition process and anti-scratch property of silicon oxide film by PECVD with UHF power were investigated according to the effect of UHF input power with HF bias. New regime of high rate deposition of SiOx films by hybrid plasma process was investigated. The dissociation of OMCTS (C8H24Si4O4) precursor was controlled by plasma processes. SiOx films were deposited on polyethylene terephthalate (PET) and polycarbonate substrate by plasma enhanced chemical vapor deposition (PECVD) using OMCTS with oxygen carrier gas. As the input energy increased, the deposition rate of SiOx film increased. The plasma diagnostics were performed by optical emission spectrometry. The deposition rate was characterized by alpha-step. The mechanical properties of the coatings were examined by nano-indenter and pencil hardness, respectively. The deposition rate of the SiOx films could be controlled by the appropriate intensity of excited neutrals, ionized atoms and UHF input power with HF bias at room temperature, as well as the dissociation of OMCTS.

  • PDF

Predictive model of fatigue crack detection in thick bridge steel structures with piezoelectric wafer active sensors

  • Gresil, M.;Yu, L.;Shen, Y.;Giurgiutiu, V.
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.97-119
    • /
    • 2013
  • This paper presents numerical and experimental results on the use of guided waves for structural health monitoring (SHM) of crack growth during a fatigue test in a thick steel plate used for civil engineering application. Numerical simulation, analytical modeling, and experimental tests are used to prove that piezoelectric wafer active sensor (PWAS) can perform active SHM using guided wave pitch-catch method and passive SHM using acoustic emission (AE). AE simulation was performed with the multi-physic FEM (MP-FEM) approach. The MP-FEM approach permits that the output variables to be expressed directly in electric terms while the two-ways electromechanical conversion is done internally in the MP-FEM formulation. The AE event was simulated as a pulse of defined duration and amplitude. The electrical signal measured at a PWAS receiver was simulated. Experimental tests were performed with PWAS transducers acting as passive receivers of AE signals. An AE source was simulated using 0.5-mm pencil lead breaks. The PWAS transducers were able to pick up AE signal with good strength. Subsequently, PWAS transducers and traditional AE transducer were applied to a 12.7-mm CT specimen subjected to accelerated fatigue testing. Active sensing in pitch catch mode on the CT specimen was applied between the PWAS transducers pairs. Damage indexes were calculated and correlated with actual crack growth. The paper finishes with conclusions and suggestions for further work.

Deposition of Protective Layer on Stealth Sheet and Evaluation of the Protected Sheet's Mechanical Performance (스텔스 소자의 보호층 도포 및 기계적 성능 평가 연구)

  • Sang Yeon So;Jae Won Hahn
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.5
    • /
    • pp.185-191
    • /
    • 2023
  • We report the results of evaluating the hardness, flexibility, and adhesion between the protective layer and the stealth sheet after applying a protective layer to improve the practicality of the flexible stealth sheet. The result of the ISO 15184 pencil hardness test showed that the hardness increased from HB to 3H by three grades when a protective layer was applied. The flexibility evaluation was conducted by bending the material against cylinders of certain diameters and observing whether cracks occurred according to the ASTM D522 test method. The result showed that the minimum diameter was 0.125 inches. The adhesion was evaluated by using the ASTM D3359 test method, attaching and peeling off an adhesive strip to the protective layer and determining the proportion of the protective layer peeling off. The result was 5B, which is better than the military adhesion limit of 4B.

A Study on Enhanced of Anti-scratch performance of Nanostructured Polymer Surface (고분자 나노 표면의 내스크래치 특성 향상 연구)

  • Yeo, N.E.;Cho, W.K.;Kim, D.I.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.41-46
    • /
    • 2017
  • In this study, rapid cooling method was proposed to improve the anti-scratch performance of anti-reflection film fabricated by nanoimprint lithography. Effects of cooling time on the mechanical properties and optical properties were evaluated. Pencil hardness measurements showed that anti-scratch performance enhanced as the cooling time increased while characterization on the optical property showed that reflectance on scratch increased as the cooling time increased. Therefore, it was concluded that the anti-scratch performance and optical properties are highly influenced by the cooling time. The observed results explained in terms of residual stress and free volume in polymeric materials.