• Title/Summary/Keyword: mechanical industry

Search Result 3,017, Processing Time 0.031 seconds

Robotic Automation Technologies in Construction : A Review

  • Chu, Baek-Suk;Kim, Dong-Nam;Hong, Dae-Hie
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.85-91
    • /
    • 2008
  • Robot technology is a remarkably interdisciplinary research area, one that can be employed in various industrial fields as well as higher value-added fields. The construction industry, on the other hand, has been known as one of the most difficult research fields to apply robotic schemes. Therefore, applying robot technologies in the construction industry is quite a challenging topic. This paper aims to introduce the progress of automated robotic systems in construction fields, namely with respect to construction robots. While construction robots have a very wide range of application depending on the huge market size of the construction industry, there still exist a lot of problems such as highly risky working environment and inefficiency due to the labor intensive characteristic. In order to solve these problems, a variety of construction robots have been developed and, in this paper, the current state of the robotic systems for construction works and the vision of future robot technology in the construction field are introduced.

Heat Transfer and Friction in Rectangular Convergent Channels with Ribs on One Wall

  • Kim, Won-Cheol;Lee, Myung-Sung;Bae, Sung-Taek;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.12-18
    • /
    • 2014
  • The local heat transfer of developed turbulent flows in the stationary ribbed rectangular convergent channels has been investigated experimentally. The rectangular convergent channels with one ribbed surface only have the inclination of $0.72^{\circ}$ and $1.43^{\circ}$ at which the ribbed wall is manufactured with a fixed rib height (e) of 10 mm and the ratio of rib spacing (p) to height (e) =10. The measurement was conducted within the range of Reynolds numbers from 15,000 to 89,000. The local heat transfer characteristics of the rectangular convergent channels are quite different from those of the ribbed square straight channel.

Evaluation of Module Degree Considering Assembly and Disassembly (조립과 분리를 고려한 제품의 모듈정도 평가)

  • Mok, Hak-Soo;Yang, Tae-Il;Hwang, Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.140-150
    • /
    • 2000
  • In this paper module of a product is determined by the characteristics of a product itself and process. To analyze the characteristics of the product information on subassemblies and parts can be obtained by analyzing the existing product. Based on the analysis of characteristics of product structure and function determination rules of a module degree could be proposed for assembly and disassembly process and product structure and function. By applying these rules of a module, module of a product is classified into full half and non-module depending on the module degree of a product. As a result of module degree analysis simpler assembly process and reduced structural interference can be realized. For the product function simpler updated and multi function can be also achieved.

  • PDF

Development of Anomaly Detection Methods for a Collaborative Robot in Chemical Drum Assembly

  • Sung-Hun Jeong;Gi-Seong Kim;Shi-Baek Park;Han-Sung Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.5
    • /
    • pp.1061-1068
    • /
    • 2024
  • In this paper, anomaly detection methods for a collaborative robot during the chemical drum assembly process in the semiconductor industry are presented. The manual assembly of chemical drums has been automated using robots to prevent industrial accidents. However, the automation may increase downtime due to anomalies or failures in the robot manipulator tasks. To prevent this issue in advance, the methods to diagnose anomalous behaviors and conditions in the robotic automation workflow and subsequently resume tasks are proposed. To detect and diagnose anomalies in the tasks, the Random Forest classification method was utilized. Using this Random Forest classification, the collaborative robot anomaly detection model achieved an accuracy of 98.91%, successfully detecting all anomalies in the assembly process.

Risk Assessment of Mechanical Parking Facility during Construction based on AHP Analysis (AHP 분석을 이용한 기계식 주차설비 건설 중 위험성 평가방안 연구)

  • Lee, Jeong Han;Kim, Yong Gon;Lee, Jae Won;Kim, Jong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.33-41
    • /
    • 2022
  • As the number of automobile registrations increases yearly, parking spaces that are located in downtown areas are increasing, and mechanical parking facilities are also increasing. Therefore, there is a high risk of accidents when installing and repairing a mechanical parking facility. In the preceding six years (from 2012 to 2018), the statistics that pertain to accidental disasters indicated that a total of 137 disaster victims were generated by the construction sector, 33 accidents occurred, and 10 people died. However, only the safety management items pertaining to accidents that occur during maintenance work and the use of the installed mechanical parking facilities are being studied; furthermore, there is no ongoing research with respect to the risk management that is conducted at the construction site. In 2017, the Korea Occupational Safety and Health Agency (KOSHA) announced the "Guidelines for Safe Installation and Maintenance of Mechanical Parking Equipment"; however, it is a safety guideline that is limited to the installation of basic protective equipment and to facility installation. There is no model for mechanical parking facilities that is indicated in the "Risk Assessment Model by Construction Industry Type", which is issued by the Safety and Health Corporation and is widely utilized for risk assessment in the construction industry; moreover, elevator installation work CODE N0: 22 is the only major example of a disaster. In this study, "risk assessment through a focus group interview" was performed, and data was derived from the "risk assessment of Article 41 (2) of the Industrial Safety and Health Act", which reflects the characteristics of the construction industry based on AHP analysis. The results of this study can be utilized for the risk assessment that is conducted during the construction stage of mechanical parking facilities.

Fabrication and High-temerature Mechanical Property of Liquid-Phase-Sintered SiC (액상소결 탄화규소 세라믹스의 제조 및 고온기계적 특성)

  • Lee, Moonhee;Kim, Sungwon;Lee, Jongho;Hwang, SeungKuk;Gwak, Jaehwan;Lee, Jinkyung;Lee, Sangpill
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.669-674
    • /
    • 2020
  • Liquid-phase-sintered (LPS) SiC materials were briefly examined with their microstructure and mechanical property. Especially, effect of high-temperature exposure on the tendency of fracture toughness of LPS-SiC were introduced. The LPS-SiC was fabricated in hot-press by sintering powder mixture of sub-micron SiC and sintering additives of Al2O3-Y2O3. LPS-SiC represented dense morphology and SiC grain-growth with some amount of micro-pores and clustered additives as pore-filling. The strength of LPS-SiC might affected by distribution of micro-pores. LPS-SiC tended to decrease fracture toughness depending on increasing exposure temperature and time.

A Study on Development of Safety Duty Education According to Production Manager Job Analysis in the Mechanical System (기계 시스템 생산 작업관리자 직무 분석에 의한 안전직무교육 개발에 관한 연구)

  • Yang, Kwang-Mo;Kim, Chang-Shik
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2017
  • As the demand for automation (or autonmation) or clean workplace has grown, the interest in the knowledge and skill regarding safety is rising in manager duty. Moreover, the importance of severity rate of injury has increased due to the enlargement of industry scale, even safety management area has developed. Thus, it is important that production managers, the core of the line process, realize the safety in their production line, even if a safety manager acts as a staff. However, in the duty oriented National Competency Standard (NCS), the education about the safety duty of production management part is insufficient. According to NCS, it is calculated production managers receive only 6.7% of whole safety education regarding the duty related the safety management for production manager in mechanical industry. However, the ability in safety is more demanded from production managers as the concept of "production and safety" turns into the concept of "production with safety". And then in this paper, we will compare and analyze the safety management duty in Korean NCS and the safety management duty in State Leaders Connecting Learning to Work in US manufacturing industry, in terms of the duty of the production manage in mechanical industry (05). And, we will develop the safety duty education system for production manager, by classifying the safety education in domestic mechanical industry into knowledge education, skill education, and attitude education with using AHP(Analytic Hierarchy Process).

A Study on Satisfaction of Worker′s Uniform in the Mechanical Industry (기계공업 종사자의 작업복 만족도 연구)

  • 김혜령;서미아
    • The Research Journal of the Costume Culture
    • /
    • v.11 no.6
    • /
    • pp.867-878
    • /
    • 2003
  • The purpose of this study is to provide basic data for improvement in worker's uniform in both scientific and efficient ways. To make this procedure right, we brought the focus of the study into the present condition of working uniform in various machinery plants. The study was enforced by questionnaire and personal interview. The subjects of the survey were the 264 workers working in mechanical industry in Seoul. The results obtained from the researches by methods above are as follows. The level of satisfaction, on the whole, with their uniforms failed to reach the average level with the result of 2.97. The reason would be they have not been very contented with colors and materials. The level of satisfaction of color was only 2.76, far less reaching the average score 3. In detail, they complained color is dull, dark, too much solid and outdated. Surprisingly, the level of satisfaction with materials turned out to be really low as the materials used get dirty easily, doesn't draw moisture away from the skin quickly transport to surface making wearer more comfortable and doesn't have plenty of air moving out. According to statistics of population, the level of satisfaction of uniform on the whole differed from the point of age, gender, categories of industry, one's professional experience and income level.

  • PDF

Effects of Heat Treatment on the Micro-structures and the Mechanical Properties of 0.002% Boron-added Low Carbon Steel (0.002% 보론첨가 저탄소강의 미세조직 및 기계적 성질에 미치는 열처리의 영향)

  • Lim, Jong-Ho;Kim, Jong-Sik;Park, Byung-Ho;Lee, Jin-Hyeon;Choi, Jeong-Mook
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.303-308
    • /
    • 2011
  • The effect of heat treatment on the micro-structures and the mechanical properties of 0.002% boron added low carbon steel was investigated. The tensile strength reached the peak at about $880-890^{\circ}C$ with the rising quenching temperature and then the hardness decreased sharply, but the tensile strength hardly decreased. The tensile and yield strength decreased and the total elongation increased with a rising tempering temperature, but the tensile and yield strength sharply fell and the total elongation prominently increased from above a $400-450^{\circ}C$ tempering temperature. Tempered martensite embrittlement (TME) was observed at tempering condition of $350-400^{\circ}C$. In the condition of quenching at $890^{\circ}C$ and tempering at $350^{\circ}C$, the boron precipitates were observed as Fe-C-B and BN together. The hardness decreased in proportion to the tempering temperature untill $350^{\circ}C$ and dropped sharply above $400^{\circ}C$ regardless of the quenching temperature.

Aerodynamic design optimization of an aircraft wing for drag reduction using computational fluid dynamics approach

  • Shiva, Kumar M.R;Srinath, R;Vigneshwar, K;Ravi, Kumar B
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.15-20
    • /
    • 2020
  • The aircraft industry supports aviation by building aircraft and manufacturing aircraft parts for their maintenance. Fuel economization is one of the biggest concerns in the aircraft industry. The reduction in specific fuel consumption of aircraft can be achieved by a variety of means, simplest and more effective is the one to impose minor modifications in the aircraft main wing or the parts which are exposed to the air flow. This method can lead to a reduction in aerodynamic resistance offered by the air and have a smoother flight. The main objective of this study is to propose geometric design modifications on an existing aircraft wing which acts as a vortex generator and it can reduce the drag and increase lift to drag ratio, leading to lower fuel consumption. The NACA 2412 aircraft wing is modified and designed. Rigorous flow analysis is carried out using computational fluid dynamics based software Ansys Fluent. Results show that saw tooth modification to the main wing shows the best aerodynamic efficiency as compared to other modifications.