• 제목/요약/키워드: mechanical hardness

검색결과 2,944건 처리시간 0.028초

기계적 밀링과 플라즈마 활성 소결법에 의한 TiB2 분산 Cu기 복합재료 제조 (Synthesis of TiB2 Dispersed Cu Matrix Composite Material by the Combination of the Mechanical Milling and Plasma Activated Sintering Process)

  • 김경주;이길근;박익민
    • 한국분말재료학회지
    • /
    • 제14권5호
    • /
    • pp.292-297
    • /
    • 2007
  • The present study was focused on the synthesis of a $TiB_2$ dispersed copper matrix composite material by the combination of the mechanical milling and plasma activated sintering processes. The $Cu/TiB_2$ mixed powder was prepared by the combination of the mechanical milling and reduction processes using the copper oxide and titanium diboride powder as the raw material. The synthesized $Cu/TiB_2$ mixed powder was sintered by the plasma activated sintering process. The hardness and electric conductivity of the sintered bodies were measured using micro vickers hardness and four probe method, respectively. The relative density of $Cu/TiB_2$ composite material sintered at $800^{\circ}C$ showed about 98% of theoretical density. The $Cu-1vol%TiB_2$ composite material has a hardness of about 130Hv and an electric conductivity of about 85% IACS. The hardness and electric conductivity of $Cu-3vol%TiB_2$ composite material were about 140 Hv and about 45% IACS, respectively.

자동차 냉각기 고무호스의 가속 노화거동 평가 (Characteristic Accelerated Aging Assessment for Coolant Rubber Hose of Automotive Radiator)

  • 곽승범;최낙삼;강봉성;신세문
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2006년도 학술발표대회 논문집
    • /
    • pp.27-31
    • /
    • 2006
  • Rubber hoses for automobile radiators are apt to degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under thermal and mechanical loadings. The aging behaviors of the skin part of the hoses due to thermo-oxidative and electro-chemical stresses were experimentally analyzed. Through the thermo-oxidative aging test, it was shown that the surface hardness IRHD(International Rubber Hardness Degrees) of the rubber increased with a considerable reduction of failure strain as the aging time and temperature were large. On account of the penetration of coolant liquid into the skin part the weight of rubber specimens influenced by electro-chemical degradation (ECD) test increased, whereas their failure strain and IRHD hardness decreased. The hardness decreased further as the test site on the hose skin approached to the negative pole.

  • PDF

A hardening model considering grain size effect for ion-irradiated polycrystals under nanoindentation

  • Liu, Kai;Long, Xiangyun;Li, Bochuan;Xiao, Xiazi;Jiang, Chao
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2960-2967
    • /
    • 2021
  • In this work, a new hardening model is proposed for the depth-dependent hardness of ion-irradiated polycrystals with obvious grain size effect. Dominant hardening mechanisms are addressed in the model, including the contribution of dislocations, irradiation-induced defects and grain boundaries. Two versions of the hardening model are compared, including the linear and square superposition models. A succinct parameter calibration method is modified to parametrize the models based on experimentally obtained hardness vs. indentation depth curves. It is noticed that both models can well characterize the experimental data of unirradiated polycrystals; whereas, the square superposition model performs better for ion-irradiated materials, therefore, the square superposition model is recommended. In addition, the new model separates the grain size effect from the dislocation hardening contribution, which makes the physical meaning of fitted parameters more rational when compared with existing hardness analysis models.

열화된 스테인리스강의 비커스 경도에 대한 와이블 확률 통계 특성에 관한 연구 (A study on Weibull Probability Statistics Characteristics for Vickers Hardness of Degraded Stainless Steel)

  • 남기우;조승덕;김선진;안석환
    • 동력기계공학회지
    • /
    • 제21권5호
    • /
    • pp.79-85
    • /
    • 2017
  • Vickers hardness is an important material in the design and reliability is required. Therefore, these values are very important as the basic data for design, manufacture and development, and the identification of quantitative probability distribution characteristics such as mean and dispersion is a very important parameter in design. In this study, Vickers hardness was measured after artificially heat-treated in the temperature range 753K, where chrome depletion near the grain boundary occurred for three kinds of stainless steels, and the Vickers hardness were evaluated. From the results, Vickers hardness increased with increasing heat treatment temperature. In Weibull distribution for Vickers hardness, the dispersion of STS310S at 813K and 873K was small, and the dispersion of STS316L at 753K, 933K and 993K was small. Also, STS347H exhibited the lowest dispersion at 753K in three kinds of stainless steels. The scale parameter increased with increasing heat treatment temperature in three kinds of stainless steels.

Cutting Performance of Si$_3$N$_4$ Based SiC Ceramic Cutting Tools

  • Kwon, Won-Tae;Kim, Young-Wook
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.388-394
    • /
    • 2004
  • Composites of Si$_3$N$_4$-SiC containing up to 30 wt% of dispersed SiC particles were fabricated via hot-pressing with an oxynitride glass. To determine the effect of sintering time and SiC content on the mechanical properties and the cutting performance, the composites with fixed 8hr-sintering time and 20 wt% SiC content were fabricated and tested. Fracture toughness of the composites increased with increasing sintering time, while the hardness increased as the SiC content increased up to 20 wt%. The hardness of the composites was relatively independent of the grain size and the sintered density. For machining heat-treated AISI4140, the insert with 20 wt% SiC sintered for 8hr showed the longest tool life while the insert with 20 wt% SiC sintered for 12hr showed the longest tool life for machining gray cast iron. An effort was made to relate the mechanical properties, such as hardness, fracture toughness and wear resistance coefficient with the tool life. However, no apparent relationship was found between them. It may be stated that tool life is affected by not only the mechanical properties but also other properties such as surface roughness, density, grian size and the number of the inherent defects in the inserts.

Mechanical Properties of Woodceramics According to Carbonizing Temperature - Bending, Compression and Hardness -

  • Byeon, Hee-Seop;Ahn, Sang-Yeol;Oh, Seung-Won;Piao, Jin-Ji
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권3호
    • /
    • pp.59-65
    • /
    • 2004
  • This paper reports the mechanical properties of bending, compression and hardness of woodceramics manufactured at different carbonizing temperatures (600℃, 800℃, 1000℃, 1200℃ and 1500℃) in a vacuum sintering furnace using sawdust boards of Pinus densiflora, Pinus koraiensis and Larix kaemferi. The highest values of bending MOR (MORb) were 104 kgf/cm2 (1200℃), 91 kgf/cm2 (1500℃) and 86 kgf/cm2 (1500℃), the highest values of compression strength were 152 kgf/cm2(1200℃)), 160 kgf/cm2(1000℃) and 189 kgf/cm2(1000℃), the highest values of hardness were 2.00 kgf/mm2(800℃), 2.01 kgf/mm2 (1200℃) and 2.28 kgf/mm2 (1000℃) in P. densifora, L. kaemferi and P. koraiensis, respectively. The carbonizing temperature of 600℃ was not proper to the mechanical properties for three kinds of sawdust boards and the highest values of mechanical properties were different from the kinds of mechanical properties and species of sawdust boards. Therefore, it is necessary to manufacture woodceramics at a proper temperature for particular species of sawdust boards to obtain good mechanical properties.

온도 조건에 따른 폴리머 소재의 트라이볼로지 특성 연구 (Effects of Temperature on Tribological Properties of Polymer Material)

  • 안치윤;김대은
    • Tribology and Lubricants
    • /
    • 제39권6호
    • /
    • pp.262-267
    • /
    • 2023
  • Research to replace metal mechanical elements with polymer materials has recently accelerated. However, polymers exhibit less favorable mechanical properties than metal materials, and are often easily worn-out owing to frictional heat when their mechanical elements contact while in relative motion. Therefore, research on the polymer tribological properties is required to employ polymer materials in mechanical elements operating under harsh conditions. In this study, we examine the effect of mechanical part operating temperatures on the material friction and wear characteristics of polymer materials. We conduct ball-on-disk friction tests under dry conditions at various temperatures, using a metal ball with high hardness and a polymer as the counter surface. Each test is repeated at least three times to ensure the reliability of the test results. Before the friction test, we analyze the surface hardness and roughness of each polymer specimen; after the friction test, we use a three-dimensional confocal microscope to compare and analyze the polymer specimen wear characteristics. Based on this study, we systematically elucidate the polymer material tribological characteristics. This information should be useful for selecting and utilizing polymer materials at various temperatures.

체적비가 $SiC_{p}$/AL 복합재료의 기계적 및 피로균열진전 특성에 미치는 영향 (Effect of Volume Fraction on Mechanical and Fatigue Crack Growth Properties of SiC Particle Reinforced AL Alloy Composites)

  • 권재도;안정주;문윤배
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1301-1308
    • /
    • 1996
  • In order to save the energy and protect the environment, it were studied about ecomaterials with the developed countries as central figure. In the Metal Matrix Composites(MMCs), this trends appeared the development of the MMCs which had excellent mechanical properties in spite of the low volume fraction of reinforcement. Therefore, in this study, fatigue crack growth test, tensile and hardness test were conducted in order to investigate the mechanical and fatigue properties of 5 %, and 10 % $SiC_{p}$/Al composites. As the results, in the tensile and hardness test, tensile strength and hardness increased but fatigue crack growth rate decreased with $SiC_{p}$/Al volume fraction. And in the view of fatigue failured surface through the SEM, fatigue crack initiated around the SiC particle and in low $\Delta{K}$ regions, fatigue creck detoured the SiC particle but crack propagated through the SiC particle in the high $\DeltaK$ regions.

와이블 통계 해석에 의한 ZrO2 복합 세라믹스의 기계적 특성 (Determining Mechanical Properties of ZrO2 Composite Ceramics by Weibull Statistical Analysis)

  • 김선진;김대식;남기우
    • 대한기계학회논문집A
    • /
    • 제39권10호
    • /
    • pp.955-962
    • /
    • 2015
  • 비커스 경도 시험은 모든 재료에 적용할 수 있으며, 경도 시험 중에서 가장 광범위하게 사용된다. 경도는 기계적 성질을 평가하는 하나의 확률변수로 볼 수 있다. 본 연구는 $ZrO_2$ 단상 세라믹스와 $TiO_2$ 첨가량에 따르는 $ZrO_2/SiC$ 복합 세라믹스의 굽힘강도와 비커스 경도의 통계적 성질을 조사하였다. 굽힘강도와 비커스 경도는 와이블 확률 분포를 잘 따랐다. 척도 및 형상 파라메터는 $ZrO_2$ 모재 세라믹스, $ZrO_2/SiC/TiO_2$ 모재 세라믹스 및 이들을 열처리한 세라믹스를 사용하여 평가하였다. 또한 압입하중의 증가에 따른 영향도 평가하였다.

Mechanical properties related to the microstructure of seven different fiber reinforced composite posts

  • de la Pena, V?ctor Alonso;Darriba, Iria L;Valea, Martin Caserio;Rivera, Francisco Guitian
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권6호
    • /
    • pp.433-438
    • /
    • 2016
  • PURPOSE. The aim of this in vitro study was to evaluate the mechanical properties (bending strength and hardness) of seven different fiber reinforced composite posts, in relation to their microstructural characteristics. MATERIALS AND METHODS. Two hundred eighty posts were divided into seven groups of 40, one group for each type of post analyzed. Within each group, 15 posts were subjected to three-point bending strength test, 15 to a microhardess meter for the Knoop hardness, and 10 to Scanning Electron Microscope in order to determine the diameter of the fibers and the percentage of fibers embedded in the matrix. To compare the flexural strength in relation to the type of fiber, matrix, and the hardness of the posts, a Kruskal-Wallis H test was used. The Jonckheere-Terpstra test was used to determine if the volume percent of fibers in the post influenced the bending strength. RESULTS. The flexural strength and the hardness depended on the type of fibers that formed the post. The lower flexural strength of a post could be due to deficient bonding between the fiber and the resin matrix. CONCLUSION. According to the results, other factors, besides the microstructural characteristics, may also influence the mechanical properties of the post. The feature that has more influence on the mechanical properties of the posts is the type of fiber.