• 제목/요약/키워드: mechanical failure

검색결과 2,999건 처리시간 0.032초

원공노치를 가진 CFRP의 적층방향에 따른 기계적 특성 평가 (The Mechanical Properties Evaluation on Lay-up Orientation Effect of CFRP Laminate Composite with the Hole Notch)

  • 태영일;윤유성;권오헌
    • 한국안전학회지
    • /
    • 제17권1호
    • /
    • pp.25-32
    • /
    • 2002
  • The tensile tests for [0/90]s, [90/0]s, and $[0/{\pm}45/90]s$ laminate composite were accomplished with acoustic sensor and failure processes were recorded by a video camera in real time. Also SEM examinations for fracture and side surface were carried out. The purpose of study is estimation of the failure mechanism and the mechanical properties effected by lay-up orientation for CFRP laminate composite with the hole notch. From the results, mechanical properties were obtained and they are similar between two kinds of cross-ply orientation in CFRP laminate composites, but not on $[0/{\pm}45/90]s$. And accordings to increasing the load, accumulate AE count was increased, regardless of lay-up orientation. Futhermore, failure mechanism was described by a video monitoring and SEM.

A Study on a Composite Laminate Pull-through Joint

  • Kwon, Jeong-Sik;Kim, Jin-Sung;Seo, Bum-Kyung;Lee, Soo-Yong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.63-69
    • /
    • 2017
  • In this paper, composite laminate pull-through resistance was analyzed using the FEM method and compared with test results. 2D and 3D simplified FEM models, a nonlinear analysis, and a progressive failure analysis utilizing three composite laminate failure theories Maximum Stress, Maximum Strain, and Tsai-Wu were used to predict the FEM results with the test results. The load and boundary conditions of the test were applied to the FEM to simulate the test. A composite laminate pull-through test (ASTM D7332 Proc. B) was designed with a special fixture to collect more precise data. The test results were compared with the FEM analysis results.

An application of neural network analysis in diagnosis of mechanical failure of a total artificial heart

  • Park, Seong-Keun;Choi, Won-Woo;Min, Byoung-Goo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.500-504
    • /
    • 1995
  • A neural network based upon the back propagation algorithm was designed and applied to acoustic power spectra of electrohydraulic total artificial hearts in order to diagnose mechanical failure of devices. The trained network distinguished spectra of the mechanically damaged device from those of the undamaged device with overall success rate of 63%. Moreover, the network correctly classified more than 70% of spectra in the frequency bands of 0-100 Hz and 700-950 Hz. Consequently, the neural network analysis was useful for the diagnosis of mechanical failure of a total artificial heart.

  • PDF

Experimental validation of ASME strain-based seismic assessment methods using piping elbow test data

  • Jong-Min Lee ;Jae-Yoon Kim;Hyun-Seok Song ;Yun-Jae Kim ;Jin-Weon Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1616-1629
    • /
    • 2023
  • To quantify the conservatism of existing ASME strain-based evaluation methods for seismic loading, this paper presents very low cycle fatigue test data of elbows under various cyclic loading conditions and comparison of evaluation results with experimental failure cycles. For strain-based evaluation methods, the method presented in ASME BPVC CC N-900 and Sec. VIII are used. Predicted failure cycles are compared with experimental failure cycle to quantify the conservatism of evaluation methods. All methods give very conservative failure cycles. The CC N-900 method is the most conservative and prediction results are only ~0.5% of experimental data. For Sec. VIII method, the use of the option using code tensile properties gives ~3% of experimental data, and the use of the material-specific reduction of area can reduce conservatism but still gives ~15% of experimental data.

인장파단시간 및 응력측정에 의한 SAPH45의 수명예측 (Prediction of life of SAPH45 steel with measured fracture time and strength)

  • 박종민
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.269-273
    • /
    • 1998
  • The failure of material structures or mechanical system is considered as a direct or indirect result of fatigue. In the design of mechanical structure for estimating of reliability, the prediction of failure life is the most important failure mode to be considered. However, because of a complicated behavior of fatigue in mechanical structure, the analysis of fatigue is in need of much researches on life prediction. This document presents a prediction of fatigue life of the SAPH45 steel, which is extensively for vehicle frame. The method using lethargy coefficient and stress distribution factor at pediction of fatigue life based on the consideration of the failure characteristics from the tensile test should be provided in this study.

  • PDF

Irregular Failures at Metal/polymer Interfaces

  • Lee, Ho-Young
    • 한국표면공학회지
    • /
    • 제36권4호
    • /
    • pp.347-355
    • /
    • 2003
  • Roughening of metal surfaces frequently enhances the adhesion strength of metals to polymers by mechanical interlocking. When a failure occurs at a roughened metal/polymer interface, the failure prone to be cohesive. In a previous work, an adhesion study on a roughened metal (oxidized copper-based leadframe)/polymer (Epoxy Molding Compound, EMC) interface was carried out, and the correlation between adhesion strength and failure path was investigated. In the present work, an attempt to interpret the failure path was made under the assumption that microvoids are formed in the EMC as well as near the roots of the CuO needles during compression-molding process. A simple adhesion model developed from the theory of fiber reinforcement of composite materials was introduced to explain the adhesion behavior of the oxidized copper-based leadframe/EMC interface and failure path. It is believed that this adhesion model can be used to explain the adhesion behavior of other similarly roughened metal/polymer interfaces.

확률론적 파괴역학 기법을 이용한 압력관의 파손확률 평가 (Failure Probability Evaluation of Pressure Tube using the Probabilistic Fracture Mechanics)

  • 손종동;오동준
    • 한국안전학회지
    • /
    • 제22권4호
    • /
    • pp.7-12
    • /
    • 2007
  • In order to evaluate the integrity of Zr-2.5Nb pressure tubes, probabilistic fracture mechanics(PFM) approach was employed. Failure assessment diagram(FAD), plastic collapses, and critical crack lengths(CCL) were used for evaluating the failure probability as failure criteria. The Kr-FAD as failure assessment diagram was used because fracture of pressure tubes occurred in brittle manner due to hydrogen embrittlement of material by deuterium fluence. The probabilistic integrity evaluation observed AECL procedures and used fracture toughness parameters of EPRI and recently announced theory. In conclusion, the probabilistic approach using the Kr-FAD made it possible to determine major failure criterion in the pressure tube integrity evaluation.

Effect of External Corrosion in Pipeline on Failure Prediction

  • Lee, Ouk-Sub;Kim, Ho-Jung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권2호
    • /
    • pp.48-54
    • /
    • 2000
  • This paper presents the effect of shape of external corrosion in pipeline on failure prediction by using a numerical simulation. The numerical study for the pipeline failure analysis is based on the FEM(Finite Element Method)with an elastic-plstic and large-deformation analysis. Corrosion pits and narrow corrosion grooves in pressurized pipeline were analysed. A failure criterion, based on the local stress state at the corrosion and a plastic collapse failure mechanism, is proposed. The predicted failure stress assessed for the simulated corrosion defects having different corroded shapes along the pipeline axis compared with those by methods specified in ANSI/ASME B31G code and a modified B31G code. It is concluded the corrosion geometry significantly affects the failure behavior of corroded pipeline and categorisation of pipeline corrosion should be considered in the development of new guidance for integrity assessment.

  • PDF

Numerical modeling and prediction of adhesion failure of adhesively bonded composite T-Joint structure

  • Panda, Subhransu K;Mishra, Pradeep K;Panda, Subrata K
    • Structural Engineering and Mechanics
    • /
    • 제74권6호
    • /
    • pp.723-735
    • /
    • 2020
  • This study is reported the adhesion failure in adhesive bonded composite and specifically for the T-joint structure. Three-dimensional finite element analysis has been performed using a commercial tool and the necessary outcomes are obtained via an eight noded solid element (Solid 185-element) from the library of ANSYS. The structural analysis input has been incurred through ANSYS parametric design language (APDL) code. The normal and shear stress distributions along different layers of the joint structure have been evaluated as the final outcomes. Based on the stress distributions, failure location in the composite joint structure has been identified by using the Tsai-Wu stress failure criterion. It has been found that the failure index is maximum at the interface between flange and web part of the joint (top layer) which indicates the probable location of failure initiation. This kind of failures are considered as adhesion failure and the failure propagation is governed by strain energy release rate (SERR) of fracture mechanics. The different adhesion failure lengths are also considered at the failure location to calculate the SERR values i.e. mode I fracture (opening), mode II fracture (sliding) and mode III fracture (tearing) along the failure front. Also, virtual crack closure technique (VCCT) principle of fracture mechanics steps is used to calculate the above said SERRs. It is found that the mode I SERR is more dominating compared to other two modes of failure for the joint considered. Finally, the influences of various parametric (geometrical and material) effect on SERR of the joint structure are evaluated and discussed in details.

Studies on Morphologies and Mechanical Properties of Multi-walled Carbon Nanotubes/Epoxy Matrix Composites

  • Seo, Min-Kang;Byun, Joon-Hyung;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1237-1240
    • /
    • 2010
  • The mechanical properties of multiwalled carbon nanotubes (MWNTs)-reinforced epoxy matrix composites with different weight percentages of MWNTs have been investigated. Also, the morphologies and failure behaviors of the composites after mechanical tests are studied by SEM and TEM analyses. As a result, the addition of MWNTs into the epoxy matrix has a remarkable effect on the mechanical properties. And the fracture surfaces of MWNTs/epoxy composites after flexural strength tests show different failure mechanisms for the composites under different nanotube contents. Also, a chemical functionalization of MWNTs can be a useful tool to improve the dispersion of the nanotubes in an epoxy system, resulting in increasing the mechanical properties of the composite materials studied.