'95 KACC (1995. 10. 23 ~25)

AN APPLICATION OF NEURAL NETWORK ANALYSIS IN DIAGNOSIS
OF MECHANICAL FAILURE OF A TOTAL ARTIFICIAL HEART

°Seong-Keun Park’, Won-Woo Choi’, Hee-Chan Kim', and Byoung-Goo Min~

*Dept. of Biomedical Eng., Seoul National University, Seoul, KOREA
Tel: +82-02-760-2509; Fax: +82-02-745-7870; E-mail: ilj@biomed.snu.ac.kr

Abstracts A neural network based upon the back propagation algorithm was designed and applied to

acoustic power spectra of electrohydraulic total artificial hearts in order to diagnose mechanical failure

of devices. The trained network distinguished spectra of the mechanically damaged device from those of

the undamaged device with overall success rate of 63%. Moreover, the network correctly classified more

than 70% of spectra in the frequency bands of 0-100 Hz and 700-950 Hz. Consequently, the neural

network analysis was useful for the diagnosis of mechanical failure of a total artificial heart.
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1. INTRODUCTION

The auditory organ is an important part of human body,
which senses pressure fluctuation of the environment as sound.
Humans hear sound to get information of surrounding and react
properly with this information. Furthermore, humans generate
sound and use it in many fields to make themselves happier. For
instance, acoustics has been used in the medical science as
follows. The extracorporeal shock wave lithotripsy that breaks
urinary stones uses ultrasound. In the stethoscopy and
percussion, physicians hear the sound of patients’ bodies to
diagnose many diseases. The ultrasonography that depends on
the acoustics and techniques of the digital signal processing has
become an indispensable tool for the diagnosis of human
diseases. Diagnostic procedures using sound are noninvasive
and have a major advantage upon other invasive diagnostic
methods for the invasive diagnostic tools might damage patients.

Sounds from artificial organs have a lot of information that
indicate the state of those artificial organs. Therefore, many

biomedical researchers have introduced acoustical methods to
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assess the function of artificial organs. Among several kinds of
artificial organs, performances of artificial valve prostheses and
total artificial hearts should be assessed thoroughly for these are
vital for human lives. The invasive assessment tools such as
monitoring blood flow, blood pressure, or driving current of
artificial organs have the risk of infection due to additional
percutaneous lines. Therefore, sound has been used earlier as a
diagnostic method of these artificial organs.

Much work has already been done using acoustics for
assessing the performance of artificial cardiac valves. In 1969,
Hylen used sound spectrum analysis to quantify valvular
dystunction in mechanical valvular prostheses [4]. In the decade
of 80’s, acoustical evaluations of bioprosthetic valves were
developed individually by Stein, Sabbah, and Longhini {10, 8 ,
and 6). They found the difference of sound spectra between
normal and degenerated bioprosthetic valves. Less work,
however, has been done on acoustically assessing the function
of artificial hearts. Sheng showed the acoustical analysis was
uscful in detecting failures of the pneumatic total artificial heart

in 1986 (9]. Lee found in 1994 that higher harmonics around



1300 Hz were shifted in a damaged electromechanical total
artificial heart that consisted of mechanically mismatched rack
and pinion compared to an undamaged electromechanical total
artificial heart [5]. Also, in 1994, Hinrichs presented her work
on the sound spectrum analysis of electromechanical artificial
heart as the thesis for her degree of master of science in the
University of Utah [3]. Hinrichs showed that peak frequency of
the sound spectrum among 400 and 500 Hz increased in a
damaged electromechanical total artificial heart that had
scratched ball bearings. However, Lee and Hinrichs observed a
limited part of the total spectrum to diagnose damaged devices.
A general method that can use a broad frequency band to get
more information from the whole spectrum is needed.

The artificial neural network is suited for the analysis of
sound spectrum as a whole unit. Given the fact that the artificial
neural network resembles the structure of the human neural
network, this implies the ability of the artificial neural network
to distinguish similar patterns into groups that have distinct
characteristics. Neural networks have been applied successfully
to classification and pattern recognition problems of character
recognition, etiology of low back pain, and sonar signals from
underwater objects [7, 1, and 2]. Once trained, a network may
be used to correctly classify input that it has never seen before
and it can be used in predictive applications. In theory, a
network with a back propagation algorithm work in any
application in which an input-output relationship exists.
Therefore, the network architecture based on a back propagation
algorithm was chosen and applied for distinguishing sound
spectra of electrohydraulic total artificial hearts (EHTAHs).

2. MATERIALS AND METHODS

Two EHTAHs of the Artificial Heart Research Laboratory in
the University of Utah were used, one undamaged and the other
damaged by scratching the inner race of the bearings. Acoustic
data were acquired under two separate conditions, one in a
water tank and the other in postmortem sheep.

First, the in vitro experiment was performed. An EHTAH
was submerged in a water tank and a microphone (model
#106B50, PCB Piezotronics, Incorporated, Depew, New York)
was set 15 cm apart from the center of the EHTAH. The

EHTAH was set to run at 6000 rpm, bidirectionally at 50%
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systole and 60 beats per minute.

Second, the animal experiment was done. After removing the
natural heart, the EHTAH was implanted in the animal’s chest
cavity. Aquasonic 100 ultrasound transmission gel was placed
on the fifth intercostal space and the microphone was then
placed on top of the gel. The EHTAH was set to run at 6000
rpm, bidirectionally at 50% systole and 60 beats per minute.

The voltage signals that indicated the vibration of bearings
were acquired through an analog-to-digital converter and saved
into an IBM compatible personal computer. The sampling
interval was 70 psec and the duration of data acquisition was
0.5 sec. The discrete Fourier transform was performed on the
acoustic data and the log power spectra of the EHTAH sound
were acquired with the frequency interval of 1 Hz. The number
of acoustic data in the in vitro test was 25 for the damaged and
23 for the undamaged. In the animal experiment, the number of
acoustic data was 13 for the damaged and undamaged
respectively. The high frequency portion of every power
spectrum above 1 kHz was removed since it had insignificantly
low power. All 74 power spectra were normalized to have the
same total power. The number 10 was added to each power
value and divided by 10 to make each power value lie between
0and 1. To determine which part of a spectrum was critical to
the network in the successful classification, the rectangular
window of which bandwidth was 100 Hz was applied to the
normalized power spectrum and the window moved with an
interval of 50 Hz. Consequently 19 windowed spectra were
acquired trom cach power spectrum.

The designed neural network consisted of an input layer, one
hidden layer, and an output layer. The input layer contained 100
nodes and 100 points representing the log power value in each 1
Hz band of the sound spectrum were used as input values into
the neural network. The output of the neural network consisted
of | node that could take on a value ot 0 to 1 depending on
whether the EHTAH was undamaged or not. The number of
nodes in the hidden layer was empirically determined to be 20.
A neural network architecture based on a back propagation
using log-sigmoid function was chosen. The network was
implemented with the MATLAB software package (Math
Works Inc.) on an IBM compatible pentium 100 MHz personal
computer. The network was trained with three different training
data sets. Tirst, 10 pairs of data were selected among power

spectra of the in vitro experiment, that is, 10 spectra for the



TABLE 1. The number of testing data sets which the trained network correctly classified.

training with in vitro data training with animal data training with mixed data
window No. |in vitro (28) |animal (26) | total (54) lin vitro (48) }animal (6) | total (54) [in vitro (38) |animal (16) | total (54)

1 25 18 43 36 5 41 34 16 50
2 24 8 32 30 5 35 36 10 46
3 i3 17 30 29 6 35 23 14 37
4 11 15 26 21 4 25 16 16 32
5 19 8 27 21 5 26 19 9 28
6 19 11 30 17 6 23 19 7 26
7 18 12 30 16 6 22 16 10 26
8 16 14 30 24 6 30 16 11 27
9 18 11 29 21 5 26 12 7 19
10 14 8 22 15 4 19 9 8 17
11 19 12 3l 19 5 24 27 10 37
12 20 13 33 22 6 28 28 11 39
13 12 4 16 16 5 21 16 7 23
14 12 5 17 10 5 15 13 4 17
15 26 14 40 44 6 50 37 13 50
16 27 18 45 47 6 53 38 11 49
17 27 16 43 48 5 53 38 12 50
18 27 15 42 47 5 52 38 12 50
19 18 6 24 11 2 13 23 3 26

overall rate 69% 46% 58% 54% 85% 58% 63% 63% 63%

damaged and undamaged each. Second, 10 pairs of data were
chosen from the animal experiment. Last, S pairs of data were
used from the in vitro and animal experiment respectively. The
network was trained for 100,000 iterations and the sum squared
error decreased below the predetermined error goal of 0.01. The
trained network was then tested using both 20 training and 54
testing data sets. Criteria of the classification success were the
output value above 0.8 for the damaged and below 0.2 for the

undamaged.

3. RESULTS

The results that the trained network worked m classitving
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testing data sets are shown in Table 1. As expected, the
performance of the network was better on the training set and
the network recognized 100% of training data sets in all of three
dilferent traimings. When the testing data sets were applied to
the network, however, the overal classification success rate was
decreased to 58% (390/1026) in the training of in vitro data,
58% (591/1026) in the training of animal experiment data, and
63% (649/1026) in the training of mixed data. Analyzing the
overall classification success rate of the training with in vitro
data, the rate for testing data sets of the in vitro experiment was
68% (365/532) and the rate for testing data sets of the animal
experiment was 46% (225/494). In the case of the training of
animal experiment, the network successfully classified 54%

(494/912) of the 1n vitro testing data sets and 85% (97/114) of



the animal testing data sets. Trained with mixed data, the
network was able to correctly differentiate 63% (458/722) of the
in vitro testing data and 63% (191/304) of the animal testing
data.
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Fig.1 Classification success (percentage of total numbers
correctly identified in the testing data set) when window was

applied.

Analysis of the results in the specific frequency band shows
that certain frequency ranges were important to the network in
successful classification (Fig. 1). For all three training cases,
the classification success rates were over 70% in 5 frequency
bands. The first band lies in low frequency range (0-100 Hz)
and the other 4 bands are located continually through 700-950
Hz.

4. DISCUSSION

The results of this study indicate that the mechanically
damaged EHTAH produce different acoustical power spectra
from those of the undamaged one. This difference is diflicult to
discriminate visually, but can be discemed using sophisticated
classification techniques, such as neural network analysis.

Our data demonstrated that similar acoustic power spectra
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could be differentiated using the classification technique of
neural network analysis. Comparing the results of 3 different
trainings, the case of using mixed data was better than the
others. We thought that one of the reason for this fact was the
acoustic characteristics of the animal chest. When sound wave
transmits through the animal chest, it traverses at least 4
different tissue layers. Characteristics of the sound wave such as
amplitude and phase will change at boundaries of those layers.
Morcover, the anatomical geometry of the animal chest is not so
simple that the coherency of the sound wave that is detected at
the surface cannot be maintained due to reflective waves.
Nevertheless, the acoustic power spectra can be classified
successfully on the condition that training data sets include data
of the animal experiments.

Moreover, it was possible to show that the certain frequency
bands were important to distinguish sound spectra of EHTAHs.
These bands can be used in classifying acoustic power spectra
of other EHTAHs. However, this cannot be generalized to
include sound spectra from other kinds of damage. It should be
understood that this specific location of frequency bands ought
to be applied only to specific cases since the damage to the
EHTAH in this study was confined to bearings only. The
physical meaning of these bands is still unknown. A more
intensive study is needed to reveal the underlying mechanism of
acoustic power spectra from mechanically damaged EHTAHs.

In conclusion, EHTAHs with the mechanically damaged
bearings produce similar, but not identical acoustic power
spectra compared to undamaged EHTAHs. The difference was
successfully classified using the artificial neural network and
this technique can be used in distinguishing damaged EHTAHs
from undamaged EHTAHs. Also it is possible that this
technique is modified to detect the degree of damages for the
output value of the artificial neural network can be varied

continuously from 0 to 1.
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