• 제목/요약/키워드: mechanical device

검색결과 2,854건 처리시간 0.408초

A Conceptual Design of an Integrated Tactile Display Device

  • Son, Seung-Woo;Kyung, Ki-Uk;Yang, Gi-Hun;Kwon, Dong-Soo;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2753-2758
    • /
    • 2003
  • Tactile sensation is essential for many manipulation and exploration tasks not only in a real environment but also in a virtual environment. In this paper, we discuss a conceptual design of an integrated tactile display system. The system comprises two parts: a 2 DOF force feedback device for kinesthetic display and a tactile feedback device for displaying the normal stimulation to skin and the skin slip/stretch. Psychophysical experiments measure the effects of fingerpad selection, the direction of finger movements and the texture width on tactile sensitivity. We also investigate characteristics of lateral finger movement while subjects perceive different textures. From the experimental results, the principal parameters for designing a tactile display are suggested. A tactile display device is implemented using eight piezoelectric bimorphs and a linear actuator, and is attached to a 2 DOF translational force feedback device to simultaneously simulate texture and stiffness of the object.

  • PDF

Hot and cool temperature control of the car-seat utilizing the thermoelectric device

  • Choi, Hyung-Sik;Kim, You-Shin;Woo, Jung-Jae;Jeon, Chang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1816-1821
    • /
    • 2003
  • The thermoelectric device was applied to a car-seat to control the hot temperature in summer and cold temperature in the winter. The characteristics of the device used to a car-seat were analyzed. The air conditioning structure was designed to regulate the hot side of the thermoelectric device. To control the temperature of the car-seat, a robust control algorithm based on the sliding mode control was applied, and a controller using one-chip microprocessor was developed. The performance of the proposed controller through experiments was shown.

  • PDF

Deployment Behaviors of CFRP Reflector under Zero-gravity Environment

  • Chae, Seungho;Oh, Young-Eun;Lee, Soo-Yong;Roh, Jin-Ho
    • International Journal of Aerospace System Engineering
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2020
  • A deployment mechanism is designed to stow into a small volume efficiently. The panels are fabricated by carbon fiber reinforced plastics (CFRPs). The parameters for the deployment are determined by considering the number of panels, the folding/twisting angles, and the driving force for a deployment device. In addition, a surface accuracy of the manufactured reflector is measured through a photogrammetry methodology. The deployment behavior of CFRP reflector is observed by using the zero-gravity device which compensates the gravity effect during the deployment. The zero-gravity device is constructed wire, motor, controller and loadcell. During the deployment of the reflector panel, the wire and motor compensate for its weight by the feedback process of the controller. Tests result show that a zero-gravity device compensates for the weight of the panel during the deployment of the CFRP reflector.

야지 차량의 기동성 예측을 위한 휠-토양 상호작용 시험장치 개발 (Development of Wheel-Terrain Interaction Device for Mobility Prediction of Off-road Vehicle)

  • 오현환;김관영;김진성;신용재;이규진;최민석;이수진
    • 한국CDE학회논문집
    • /
    • 제19권4호
    • /
    • pp.332-339
    • /
    • 2014
  • This paper presents on the development of wheel-terrain interaction device using low-priced sensors, which will be used to predict the drawbar pull and optimal slip of off-road vehicle in real time. The essential variables obtained in the device to predict the mobility of vehicles are determined based on semi-empirical model describing the wheel-terrain interaction. Using the developed device, the experiments about the wheel-terrain interaction were performed on the soil of the Jumunjin standard sand, which yielded dynamic weight, motor driving torque, drawbar pull, and sinkage with respect to wheel slip ratio. Finally, the repeatability of the measured data are verified through repeating the experiments three times on the same condition.

Fabrication of a Breathing Assist Device for Saxophone Players with Breathing Problems

  • Kato, Tomonori;Ashikari, Tadataka;Matoba, Chikara;Mawatari, Asashi;Thumwarin, Pitak
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.72-76
    • /
    • 2021
  • The aim of this study was to establish a breathing assist system for saxophone players with breathing problems. Although the saxophone is a popular wind instrument with a reed in its mouthpiece, it can be difficult for people with breathing problems to play this instrument, as it requires adequate breath support for deep and even long breaths. To solve this problem, the authors propose a breathing assist device, which functions like a pneumatic master-slave amplifier, for saxophone players with breathing problems. First, the proposed device is fabricated. Second, the effectiveness of the breathing assist device as a master-slave amplifier is confirmed through experiments. Third, the dynamic characteristics of the device are tested up to 10 Hz, and they demonstrate that the device responds well for up to approximately 5 Hz.

Development of a Multi-purpose Test Device for Measuring Mechanical Properties of Shoes

  • Lee, Jong-Nyun;Son, Young-Dae;Lee, Dong-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.726-729
    • /
    • 2004
  • This paper concerns on developing a multi-purpose test device for measuring mechanical properties of shoes. The device was modified from a commercial robot manipulator, with which impact, bending, and pronation tests were suggested to evaluate performances of shoes. From several experiments, the developed device could produce repetitive and consistent results corresponding to the different material of shoes. In the shoe industry, it is expected that the device could contribute to developing a better shoe for comfort of costumers.

  • PDF

망간단괴 집광기 주위 해수 유동교란 수치해석 (Numerical Analysis of Deep Seawater Flow Disturbance Characteristics Near the Manganese Nodule Mining Device)

  • 임성진;채용배;정신택;조홍연;이상호
    • Ocean and Polar Research
    • /
    • 제36권4호
    • /
    • pp.475-485
    • /
    • 2014
  • Seawater flow characteristics around a manganese nodule mining device in deep sea were analyzed through numerical investigation. The mining device influences the seawater flow field with complicated velocity distributions, and they are largely dependent on the seawater flow speed, device moving speed, and injection velocity from the collecting part. The flow velocity and turbulent kinetic energy distributions are compared at several positions from the device rear, side, and top, and it is possible to predict the distance from which the mining device affects the seawater flow field through the variation of turbulent kinetic energy. With the operation of the collecting device the turbulent kinetic energy remarkably increases, and it gradually decreases along the seawater flow direction. Turbulent kinetic energy behind the mining system increases with the seawater flow velocity. The transient behavior of nodule particles, which are not collected, is also predicted. This study will be helpful in creating an optimal design for a manganese nodule collecting device that can operate efficiently and which is eco-friendly.

스프링 클램프와 형상기억합금 와이어를 이용한 비폭발식 분리장치 (Non-explosive Separation Device Harnessing Spring Clamp and Shape Memory Alloy Wire)

  • 최준우;이동규;황국하;이민형;김병규
    • 항공우주시스템공학회지
    • /
    • 제9권2호
    • /
    • pp.7-12
    • /
    • 2015
  • In this paper, we report a non-explosive separation device for a small satellite which utilize a shape memory alloy actuator and spring clamp. In order to increase the preload, the proposed device employs spring clamp that can generate high toque when the shape memory alloy actuator makes the cylinder key unlatch a holding ball effectively. Owing to simple design of separation device configuration, we could obtain good repeatability(up to 30 times activation). Conclusively, we could develop a non-explosive separation device which can reliably activate within 1.2 sec under high preload(up to 300kgf).

IDC장치에 대한 공압시스템의 모델링에 관한 연구 (A Study on Modeling of Pneumatic System for an IDC Device)

  • 웬치탄;레광환;정영만;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권3호
    • /
    • pp.11-17
    • /
    • 2015
  • An intelligent deburring control (IDC) device is used to control the constant force for a deburring tool mounted on the end-effector of a robotic arm. This device maintains a constant contact force between the deburring tool and the workpiece in order to provide a good deburring performance. In this paper, we build a mathematical model in Matlab/Simulink to estimate the force control mechanism of the pneumatic system for the IDC device. The Simulink blocks are built for each separate part and are linked into an integrated simulation system. Such a model also relies on the effects of the flow rate through the valve, air compressibility in the cylinder, and time delay in the pressure valve. The results of the simulation are compared to a simple experiment in which convenient math modeling is performed. These results are then used to optimize the mechanical design and to develop a force control algorithm for the pneumatic cylinder.

MR 유체를 이용한 촉감구현장치의 설계 및 성능 평가 (Design and Performance Evaluation of Tactile Device Using MR Fluid)

  • 김진규;오종석;이상록;한영민;최승복
    • 한국소음진동공학회논문집
    • /
    • 제22권12호
    • /
    • pp.1220-1226
    • /
    • 2012
  • This paper proposes a novel type of tactile device utilizing magnetorheological(MR) fluid which can be applicable for haptic master of minimally invasive surgery(MIS) robotic system. The salient feature of the controllability of rheological properties by the intensity of the magnetic field(or current) makes this potential candidate of the tactile device. As a first step, an appropriate size of the tactile device is designed and manufactured via magnetic analysis. Secondly, in order to determine proper input magnetic field the repulsive forces of the real body parts such as hand and neck are measured. Subsequently, the repulsive forces of the tactile device are measured by dividing 5 areas. The final step of this work is to obtain desired force in real implementation. Thus, in order to demonstrate this goal a neuro-fuzzy logic is applied to get the desired repulsive force and the error between the desired and actual force is evaluated.