• 제목/요약/키워드: mechanical design

검색결과 15,364건 처리시간 0.037초

Numerical Design and Performance Prediction of Low Specific Speed Centrifugal Pump Impeller

  • Yongxue, Zhang;Xin, Zhou;Zhongli, Ji;Cuiwei, Jiang
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.133-139
    • /
    • 2011
  • In this paper, Based on Two-dimensional Flow Theory, adopting quasi-orthogonal method and point-by-point integration method to design the impeller of the low specific speed centrifugal pump by code, and using RANS (Reynolds Averaged N-S) Equation with a standard k-${\varepsilon}$ two-equation turbulence model and log-law wall function to solve 3D turbulent flow field in the impeller of the low specific speed pump. An analysis of the influences of the blade profile on velocity distributions, pressure distributions and pump performance and the investigation of the flow regulation pattern in the impeller of the centrifugal pump are presented. And the result shows that this method can be used as a new way in low speed centrifugal pump impeller design.

A Robust Optimization Using the Statistics Based on Kriging Metamodel

  • Lee Kwon-Hee;Kang Dong-Heon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1169-1182
    • /
    • 2006
  • Robust design technology has been applied to versatile engineering problems to ensure consistency in product performance. Since 1980s, the concept of robust design has been introduced to numerical optimization field, which is called the robust optimization. The robustness in the robust optimization is determined by a measure of insensitiveness with respect to the variation of a response. However, there are significant difficulties associated with the calculation of variations represented as its mean and variance. To overcome the current limitation, this research presents an implementation of the approximate statistical moment method based on kriging metamodel. Two sampling methods are simultaneously utilized to obtain the sequential surrogate model of a response. The statistics such as mean and variance are obtained based on the reliable kriging model and the second-order statistical approximation method. Then, the simulated annealing algorithm of global optimization methods is adopted to find the global robust optimum. The mathematical problem and the two-bar design problem are investigated to show the validity of the proposed method.

덮개 함수를 이용한 제한 조건 누적 최적화 기법에 관한 연구 (A Study on Constraint Accumulation in Mathematical Programming Problems Using Envelope Functions)

  • 이병채;이정준
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.720-730
    • /
    • 2002
  • Automated design of large structures requires efficient and accurate optimization algorithms because of a large number of design variables and design constraints. The objective of this study is to examine the characteristics of the Kreisselmeier -Steinhauser envelope function and to investigate va tidily of accumulating constraint functions into a small number of constraint functions or even into a single constraint function. The commercial package DOT is adopted as a local optimizer. The optimum results using the envelope function are compared with those of the conventional method for a number of numerical examples and the differences between them are shown to be negligible.

Design of Emergency Fire Fighting and Inspection Robot Riding on Highway Guardrail

  • Ma, Xiaotong;Li, Xiaochen;Liu, Yanqiu;Tao, Xueheng
    • 한국멀티미디어학회논문지
    • /
    • 제25권6호
    • /
    • pp.833-843
    • /
    • 2022
  • Based on the problems of untimely Expressway fire rescue and backward traditional fire rescue methods, an emergency fire fighting and inspection robot riding on expressway guardrail is designed. The overall mechanical structure design of emergency fire fighting and inspection robot riding on expressway guardrail is completed by using three-dimensional design software. The target fire detection is realized by using the target detection algorithm of Yolov5; By selecting a variety of sensors and using the control method of multi algorithm fusion, the basic function of robot on duty early warning is realized, and it has the ability of intelligent fire extinguishing. The BMS battery charging and discharging system is used to detect the real-time power of the robot. The design of the expressway emergency fire fighting and inspection robot provides a new technical means for the development of emergency fire fighting equipment, and improves the reliability and efficiency of expressway emergency fire fighting.

딥러닝, 로봇팔을 이용한 도서관 자율주행 시스템 (Autonomous Driving System in Library using 6 Dof Manipulator based on Deeplearning)

  • 이창민;신유석;김도현;조현민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.809-810
    • /
    • 2023
  • 도서관 자동화 시스템 개발로 이용자가 책을 직접 찾지 않고, 대출하고자 하는 책을 PC에 입력하면 자율주행으로 책이 있는 서가로 이동, 딥러닝 기반의 로봇팔로 책을 잡고 기존 위치로 복귀하여 자동으로 대출과 운반이 가능한 로봇의 시스템을 제안한다.

실험계획법과 유한요소해석에 의한 디스크 브레이크의 열변형 최적설계 (Optimal Design for the Thermal Deformation of Disk Brake by Using Design of Experiments and Finite Element Analysis)

  • 이태희;이광기;정상진
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.1960-1965
    • /
    • 2001
  • In the practical design, it is important to extract the design space information of a complex system in order to optimize the design because the design contains huge amount of design conflicts in general. In this research FEA (finite element analysis) has been successfully implemented and integrated with a statistical approach such as DOE (design of experiments) based RSM (response surface model) to optimize the thermal deformation of an automotive disk brake. The DOE is used for exploring the engineer's design space and for building the RSM in order to facilitate the effective solution of multi-objective optimization problems. The RSM is utilized as an efficient means to rapidly model the trade-off among many conflicting goals existed in the FEA applications. To reduce the computational burden associated with the FEA, the second-order regression models are generated to derive the objective functions and constraints. In this approach, the multiple objective functions and constraints represented by RSM are solved using the sequential quadratic programming to archive the optimal design of disk brake.

공리적 설계를 이용한 원자로 핵연료봉 지지격자체의 설계 (Design of a Nuclear Fuel Rod Support Grid Using Axiomatic Design)

  • 송기남;강병수;최성규;윤경호;박경진
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1623-1630
    • /
    • 2002
  • Recently, much attention is imposed on the design of the fuel assemblies in the Pressurized Light Water Reactor (PWR). Spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water, and maintains a coolable geometry from the external impact loads. In this research, a new shape of the spacer grid is designed by the axiomatic approach. The Independence axiom is utilized for the design. For conceptual design, functional requirements (FRs) are defined and corresponding design parameters (DPs) are found to satisfy FRs in sequence. Overall configuration and shapes are determined in this process. Detail design is carried out based on the result of the axiomatic design. For the detail design, the system performances are evaluated by using linear and nonlinear finite element analysis. The dimensions are determined by optimization. Some commercial codes are utilized for the analysis and design.

초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제4보) : CAD와 CAE의 통합 시스템에의 적용 (Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Fourth Report) : Application to Integrated CAD and CAE System)

  • 남윤의;마사토 이노우에;하루오 이시가와
    • 산업경영시스템학회지
    • /
    • 제35권1호
    • /
    • pp.181-187
    • /
    • 2012
  • Various computer-based simulation tools such as 3D-CAD and CAE systems are widely used to design automotive body structure at the early phase of design. Designers must search the optimal solution that satisfies a number of performance requirements by using their tools and a trial-and-error approach. In the previous three reports, a set-based design approach has been proposed for achieving design flexibility and robustness while capturing designer's preference, and its effectiveness has been illustrated with a simple side-door impact beam design problem and real vehicle side-door structure design. This report presents the development of integrated 3D-CAD and CAE system, and the applicability of our proposal for obtaining the multi-objective satisfactory design solutions by applying to an automotive front-side frame.