• Title/Summary/Keyword: mechanical design

Search Result 15,341, Processing Time 0.042 seconds

Design of Structure Using Orthogonal Array Considering Interactions in Discrete Design Spaces (직교배열표를 이용한 불연속 공간에서의 교호작용을 고려한 구조물 설계)

  • Hwang, Gwang-Hyeon;Gwon, U-Seong;Lee, Gwon-Hui;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2952-2962
    • /
    • 2000
  • The design of experiment(DOE) is getting more attention in the engineering community since it is easy to understand and apply. Recently, engineering designers are adopting DOE with orthogonal arrays when they want to design products in a discrete design space. In this research, a design flow with orthogonal arrays is defined for structural design according to the general DOE. The design problem is defined as a general structural optimization problem. Sensitivity information is evaluated by the analysis of variance(ANOVA), and an optimum design is determined from analysis of means(ANOM). Interactions between design variables are investigated to achieve additivity which should be valid in DOE. When strong interactions exit, a method is proposed. Some methods to consider the problem are suggested.

Development of an ISO 15926-based Integration Platform of 3D Design Data for Process Plants (ISO 15926 기반 공정 플랜트 3D 설계 정보 통합 플랫폼의 개발)

  • Kim, Byung Chul;Park, Sangjin;Kim, Bong Cheol;Myung, Sehyun;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.385-400
    • /
    • 2015
  • ISO 15926 is an international standard for the integration and sharing of plant lifecycle data. Plant 3D design data typically consist of logical configuration, equipment specifications and ports, and 3D shape data. This paper presents the method for the ISO 15926-based integration of plant 3D design data. For this, reference data (class, attribute, and template) of ISO 15926 were extended to describe plant 3D design data. In addition to the data model extension, a plant design information integration platform which reads plant 3D design data in ISO 15926 and displays 3D design information was developed. Finally, the prototype platform is verified through the experiment of loading and retrieving plant 3D design data in ISO 15926 with the platform.

Design of a Helmet with Improved Ventilation for Personal Mobility (통기성을 개선한 개인용 이동장치 헬멧 구조 설계)

  • Jin-San Oh;Seong-Jun Kwon;Min-Ki Hong;Seong-Won Jeong
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.7-16
    • /
    • 2022
  • A helmet is essential for safety when operating personal mobility. However, user's actual helmet wear rate is low due to the inconvenience of wearing and poor ventilation. In this study, a new helmet structure with improved ventilation for personal mobility devices was designed. To design a new structure with improved breathability compared to the existing helmet while satisfying the safety regulations for the helmet, a generative design method was applied to the shock-absorbing liner of the helmet. In addition, other materials were applied to create a structure with improved ventilation while maintaining safety. The generated design result was verified for shock absorption through simulation. As a result of the study, EPS, the current material was replaced with CFRP and Kevlar, and the structure was changed. This design was judged to satisfy safety regulations against impact. The new helmet structure is expected to improve the helmet usability for personal mobility and increase the helmet wear rate of users.

Optimal Design of Cylindrically Laminated Composite Shells for Strength (강도를 고려한 원통형 복합재료 구조물의 최적설계)

  • Kim, Chang-Wan;Hwang, Un-Bong;Park, Hyeon-Cheol;Shin, Dae-Sik;Park, Ui-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.775-787
    • /
    • 1996
  • An optimization procedure is proposed for the design of cylindrically laminated composite shell having midplane symmetry and subjected to axial force, torsion and internal pressure. Tsai-Wu and Tsai-Hill failure criteria are taken as objective functions. The stacking sequence represents the design variable. The optimal design formulation based on state space method is adopted and solution proccedure is described with the emphasis on the method of calculations of the design sensitivities. A gradient projection algorithm is employed for the optimization process. Numerical results are presented for the several test problems.

Performance Analysis of a Triple Pressure HRSG

  • Shin, Jee-Young;Son, Young-Seok;Kim, Moo-Geun;Kim, Jae-Soo-;Jeon, Yong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1746-1755
    • /
    • 2003
  • Operating characteristics of a triple pressure reheat HRSG are analyzed using a commercial software package (Gate Cycle by GE Enter Software). The calculation routine determines all the design parameters including configuration and area of each heat exchanger. The off-design calculation part has the capability of simulating the effect of any operating parameters such as power load, process requirements, and operating mode, etc., on the transient performance of the plant. The arrangement of high-temperature and intermediate-temperature components of the HRSG is changed, and its effect on the steam turbine performance and HRSG characteristics is examined. It is shown that there could be a significant difference in HRSG sizes even though thermal performance is not in great deviation. From the viewpoint of both economics and steam turbine performance, it should be carefully reviewed whether the optimum design point could exist. Off-design performance could be one of the main factors in arranging components of the HRSG because power plants operate at various off-design conditions such as ambient temperature and gas turbine load, etc. It is shown that different heat exchanger configurations lead to different performances with ambient temperature, even though they have almost the same performances at design points.

Analysis of Cost Variation of Piping Equipment Design of a Steel Manufacturing Plant by Simulation (시뮬레이션을 통한 제철플랜트 배관장치 설계비용의 변동 범위 분석)

  • Bae, Kyung-Suk;Heo, Ki-Moo;Yoon, Sung-Hoon;Moon, Yoon-Jae;Yoo, Ho-seon;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.10 no.4
    • /
    • pp.29-34
    • /
    • 2014
  • In this consideration, this research investigated the piping design items and drew out key design items through interview with experts and surveys to apply them to actual project examples and look into piping design item-specific significance and cost variation ranges. Based on this investigation, the Monte-Carlo simulation was employed herein to analyze the cost variation range for the entire piping design costs with a view to presenting a way to calculate a reasonable bidding price for any similar project and verify the appropriateness of joining a bid.

  • PDF

Integrated Design of Feed Drive Systems Using Discrete 2-D.O.F. Controllers (I) - Modeling and Performance Analysis - (이산형 2자유도 제어기를 이용한 이송계의 통합설계 (I) -모델링 및 성능해석-)

  • Kim, Min-Seok;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1029-1037
    • /
    • 2004
  • High-speed/precision servomechanisms have been widely used in the manufacturing and semiconductor industries. In order to ensure the required high-speed and high-precision specifications in servomechanisms, an integrated design methodology is required, where the interactions between mechanical and electrical subsystems will have to be considered simultaneously. For the first step of the integrated design process, it is necessary to obtain not only strict mathematical models of separate subsystems but also formulation of an integrated design problem. A two-degree-of-freedom controller described in the discrete-time domain is considered as an electrical subsystem in this paper. An accurate identification process of the mechanical subsystem is conducted to verify the obtained mathematical model. Mechanical and electrical constraints render the integrated design problem accurate. Analysis of the system performance according to design and operating parameters is conducted for better understanding of the dynamic behavior and interactions of the servomechanism. Experiments are performed to verify the validity of the integrated design problem in the x-Y positioning system.

Optimal Parametric Design of Coil Gun to Improve Muzzle Velocity (피투사체 속도 향상을 위한 코일건의 기구 변수 최적 설계)

  • Lee, Su-Jeong;Lee, Ju Hee;Lee, Dong Yeon;Seo, TaeWon;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.408-412
    • /
    • 2014
  • An electromagnetic launching system presents a viable projectile propulsion alternative with low cost and minimal environmental drawbacks. A coil gun system propels a projectile using an electromagnetic force and the system is mainly employed in military weapon systems and space launch systems. In this paper, we perform optimization design to improve the muzzle velocity by analyzing the sensitivity. The muzzle velocity, which is the most important design function variable, is affected by design variables including the number of axial turns in the electromagnetic coil, number of radial turns in the electromagnetic coil, initial distance between the projectile and the coil, inner radius of the electromagnetic coil, and length of the projectile. An orthogonal arrays matrix is configured, and a finite element analysis is performed utilizing the commercial electromagnetic analysis software MAXWELL. The muzzle velocity of the optimal design is 62.4% greater than that of the initial design.

The Development of Tool for Evaluating Quantitative Independency between FRs in Axiomatic Design (공리적 설계에서 FRs의 상호 독립성을 정량적으로 측정하기 위한 도구의 개발)

  • Kang, Young-Ju;Hwang, Yun-Dong;Cha, Sung-Woon;Jung, Dae-Jin;Moon, Yong-Rak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.122-130
    • /
    • 2001
  • Axiomatic Design is the useful tool for making a good design. In Axiomatic design, the independency is an important property to determine whether the design is good. Until now many designers decide the independency between FRs by their own decision. The way depending on inspiration is simple and fast, but it can not be considered as precise conclusion. Also there are not exact rule that evaluate the quantitative independency between FRs. This thesis will show the way to evaluated the quantitative independency of FRs from the comparison between FRs of more lower levels, and develop more efficient and objective tool in Axiomatic Design.

  • PDF

Development of Bellows Diaphragm Design Program far Mechanical Seal (Mechanical seal용 벨로우즈 Diaphragm 설계프로그램 개발)

  • Cho, Hae-Yong;Nam, Ki-Jung;Oh, Byung-Ki;Kim, Young-Hoon;Lee, Je-Hoon;Seo, Jung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.776-779
    • /
    • 2002
  • A bellows diaphragm design program for mechanical seal was developed in this study. This program was written in AutoLISP on the AutoCAD system with a personal computer. Basic design concept used in this program is composition of a convolution that is tangent to two lines and five circles from given design parameters(initial radius, inner and outer diameter, thickness, pitch, etc.). The effects of altering some design parameters on stress distribution of bellows were estimated using commercial FEM code, NISAII. As a result, the bellows diaphragm for mechanical seal was successfully designed by the program. The FEM result shows that stress is dependent on straight line length and bellows diameter with same span.

  • PDF