• Title/Summary/Keyword: mechanical deformation

Search Result 3,922, Processing Time 0.035 seconds

Average Flow Model with Elastic Deformation for CMP (화학적 기계 연마를 위한 탄성변형을 고려한 평균유동모델)

  • Kim Tae-Wan;Lee Sang-Don;Cho Yong-Joo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.331-338
    • /
    • 2004
  • We present a three-dimensional average flow model considering elastic deformation of pad asperities for chemical mechanical planarization. To consider the contact deformation of pad asperities in the calculation of the flow factor, three-dimensional contact analysis of a semi-infinite solid based on the use of influence functions is conducted from computer generated three dimensional roughness data. The average Reynolds equation and the boundary condition of both force and momentum balance are used to investigate the effect of pad roughness and external pressure conditions on film thickness and wafer position angle.

  • PDF

A Study of Deformation and Orientation Dependent Behavior in Single Crystals

  • Yang Chulho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.802-810
    • /
    • 2005
  • Deformations of single crystals were studied using finite element analysis to investigate the localized modes and the orientation dependence of plastic deformation observed in single crystals. Investigation of mechanical properties of single crystals is closely related with the understanding of deformation processes in single crystals. Localized bands such as shear and kink were studied and the material and geometric characteristics that influence the formation of such localized bands were investigated. Orientation dependence of material behavior in NiAl single crystals was studied by rotating slip directions from 'hard' orientation. The maximum nominal compressed stress in NiAl single crystals was widely ranged depending on the misalignment from 'hard' orientation. As the compression axis was set closer to 'hard' orientation, the maximum nominal compressed stress was rapidly increased and made <100> slips difficult to activate. Therefore, non-<100> slips will be activated instead of <100> slips for 'hard' orientation.

Some Remarks on the Spherical Indentation Theory (구형 압입이론에 관한 고찰)

  • Lee, Jin-Haeng;Lee, Hyeong-Il;Song, Won-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.714-724
    • /
    • 2001
  • In this work, some inaccuracies and limitation of prior indentation theory, which is based on the deformation theory of plasticity and experimental observations, are first investigated. Then effects of major material properties on the configuration of indentation load-deflection curve are examined via incremental plasticity theory based finite element analyses. It is confirmed that subindenter deformation and stress-strain distribution from the deformation theory of plasticity are quite dissimilar to those from incremental theory of plasticity. We finally suggest the optimal data acquisition location, where the strain gradient is the least and the effect of friction is negligible. This data acquisition point increases the strain range by a factor of five.

Estimation of mechanical properties of driving parts for automobile considering heat treatment and plastic deformation (열처리 및 소성변형을 고려한 자동차 구동축 부품의 기계적 성질평가)

  • Lee K. O.;Park J. U.;Je J. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.260-263
    • /
    • 2004
  • Since Outerrace is one of the components of driving shaft for power train of automobile and transmits high torque, high strength and high toughness are necessary so forging process is adopted to manufacture such parts. Therefore, in order to improve strength and toughness, heat treatment is accomplished after plastic deformation(forging). Because Each component of driving shaft is mounted to automobile after a series of forging, machining and heat treatment, in order to evaluate mechanical properties of such components in use, plastic deformation and heat treatment must be considered. So, in this paper, tensile tests are performed with tensile specimens which have passed through a series of upsetting, machining and heat treatment to evaluate mechanical properties of such components.

  • PDF

Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.1-24
    • /
    • 2014
  • The present study deals with two dimensional electro-elastic analysis of a functionally graded piezoelectric (FGP) cylinder under internal pressure. Energy method and first order shear deformation theory (FSDT) are employed for this purpose. All mechanical and electrical properties except Poisson ratio are considered as a power function along the radial direction. The cylinder is subjected to uniform internal pressure. By supposing two dimensional displacement and electric potential fields along the radial and axial direction, the governing differential equations can be derived in terms of unknown electrical and mechanical functions. Homogeneous solution can be obtained by imposing the appropriate mechanical and electrical boundary conditions. This proposed solution has capability to solve the cylinder structure with arbitrary boundary conditions. The previous solutions have been proposed for the problem with simple boundary conditions (simply supported cylinder) by using the routine functions such as trigonometric functions. The axial distribution of the axial displacement, radial displacement and electric potential of the cylinder can be presented as the important results of this paper for various non homogeneous indexes. This paper evaluates the effect of a local support on the distribution of mechanical and electrical components. This investigation indicates that a support has important influence on the distribution of mechanical and electrical components rather than a cylinder with ignoring the effect of the supports. Obtained results using present method at regions that are adequate far from two ends of the cylinder can be compared with previous results (plane elasticity and one dimensional first order shear deformation theories).

Deformation Capacity of Endplate-type Beam-to-Column Connection with New Type Mechanical Fasteners (신형상 메카니컬패스너를 사용한 엔드플레이트 형식 보-기둥 접합부의 변형성능)

  • Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.123-130
    • /
    • 2006
  • This study propose cutting body portion-high strength mechanical fasteners to improve deformation capacity of High strength bolts, which are the mechanical fasteners used for End-plate connections. And, we report that loading test results of steel beam-to-column connection using high deformation capacity-high strength bolts in accordance with SAC2000 loading program. As a result, the initial stiffness and the maximum strength of the connection using high deformation capacity-high strength bolts, are approximately the same in comparison with those of the end-plate connection using the existing high strength bolts. But the deformation capacity of the connection is more than twice as much as those.

  • PDF

Investigation of Machined-Surface Condition and Machining Deformation in High-Speed Milling of Thin-Wall Aluminum 7075-T651 (알루미늄 합금(Al7075-T651)의 얇은 벽 고속밀링 가공 시 가공표면 상태와 가공변형 특성)

  • Koo, Joon-Young;Hwang, Moon-Chang;Lee, Jong-Hwan;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.211-216
    • /
    • 2016
  • Al alloys are useful materials having high specific strength and are used in machining of parts having thin-walled structures for weight reduction in aircraft, automobiles, and portable devices. In machining of thin-walled structures, it is difficult to maintain dimensional accuracy because machining deformation occurs because of cutting forces and heat in the cutting zone. Thus, cutting conditions and methods need to be investigated and cutting signals need to be analyzed to diagnose and minimize machining deformation and thereby enhance machining quality. In this study, an investigation on cutting conditions to minimize machining deformation and an analysis on characteristics of cutting signals when machining deformation occurs are conducted. Cutting signals for the process are acquired by using an accelerometer and acoustic emission (AE) sensor. Signal characteristics according to the cutting conditions and the relation between machining deformation and cutting signals are analyzed.

Analysis of the Mechanism of Longitudinal Bending Deformation Due to Welding in a Steel Plate by Using a Numerical Model (수치해석모델을 이용한 강판재의 종굽힘 용접변형 생성기구의 해석)

  • Kim, Yong Rae;Yan, Jieshen;Song, Gyu Yeong;Kim, Jae-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • Welding deformation is a permanent deformation that is caused in structures by welding heat. Welding distortion is the primary cause of reduced productivity, due to welded structural strength degradation, low dimensional accuracy, and appearance. As a result, research and numerous experiments are being carried out to control welding deformation. The aim of this study is to analyze the mechanism of longitudinal bending deformation due to welding. Welding experiments and numerical analyses were performed for this study. The welding experiments were performed on 4 mm and 8.5 mm thickness steel plates, and the numerical analysis was conducted on the welding deformation using the FE software MSC.marc.

Numerical Prediction of Permanent Deformation of Automotive Weather Strip (자동차용 웨더스트립의 영구변형 예측)

  • Park, Joon-Chul;Min, Byung-Kwon;Oh, Jeong-Seok;Moon, Hyung-Il;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.121-126
    • /
    • 2010
  • The automotive weather strip has functions of isolating of water, dust, noise and vibration from outside. To achieve good sealing performance, weather strip should be designed to have the high contact force and wide contact area. However, these design causes excessive permanent deformation of weather strip. The causes of permanent deformation is generally explained to be the chemical material detrioration and physical variation and cyclic loading, etc. This paper introduces a numerical method to predict the permanent deformation using the time dependent viscoelastic model which is represented by Prony series in ABAQUS. Uniaxial tension and creep tests were conducted to obtain the material data. And the lab. test for the permanent deformation was accelerated during shorter time, 300 hours. The permanent deformation of weather strip was successfully predicted under the different loading conditions and different section shapes using the suggested numerical process.

Deformation Characteristics of Gear System with a Profile Shift Coefficient Preserving Center Distance (중심 거리 불변의 전위 계수를 적용한 기어 시스템의 변형 특성 해석)

  • Park, Su-Jin;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.194-199
    • /
    • 2003
  • In this paper, elastic deformations of several gear teeth are analyzed. The contact between a gear and pinion is modeled as a contact problem. The deformation overlap, which is defined as the interference due to deformation of gear teeth, is defined to represent the deformation characteristics of profile shifted spur sear system. The calculated deformation overlap shows teeth interference in the deformed state of a Rear system.