• Title/Summary/Keyword: mechanical connection

Search Result 543, Processing Time 0.03 seconds

Research on the mechanical properties of membrane connections in tensioned membrane structures

  • Zhang, Yingying;Zhang, Qilin;Li, Yang;Chen, Lu
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.745-762
    • /
    • 2014
  • As an important part, the connections generally are important for the overall behavior of the structure and the strength and serviceability of the connection should be ensured. This paper presents the mechanical properties of membrane connections in tensioned membrane structure. First, the details of common connections used in the membrane structure are introduced. Then, the common connections including membrane seam, membrane-flexible edge connection and membrane-rigid edge connection are tested and the corresponding failure mechanisms are discussed. Finally, the effects of connection parameters on the connection strength are investigated and proper connection parameters are proposed. The strength reduction factors corresponding to different connection types are proposed, which can be references for the design and analysis of membrane structures.

Experimental investigation of novel pre-tightened teeth connection technique for composite tube

  • Li, Fei;Zhao, Qilin;Chen, Haosen;Xu, Longxing
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.161-172
    • /
    • 2017
  • A new composite tube connection method called the pre-tightened teeth connection technique is proposed to improve the composite tube connection efficiency. This paper first introduces the manufacturing process of the proposed technique. It then outlines how the mechanical properties of this technology were tested using four test groups. The factors that influence the load-bearing capacity and damage model of the connection were analyzed, and finally, the transfer load mechanism was investigated. The following conclusions can be obtained from the research results. (1) The new technique improves the compressive connection efficiency by a maximum of 79%, with the efficiency exceeding that of adhesive connections of the same thickness. (2) Changing the depth of teeth results in two types of damage: local compressive damage and shear damage. The bearing capacity can be improved by increasing the depth, length, and number of teeth as well as the pre-tightening force. (3) The capacity of the technique to transfer high loads is a result of both the relatively high interlaminar shear strength of the pultruded composite and the interlaminar shear strength increase provided by the pre-tightening force. The proposed technique shows favorable mechanical properties, and therefore, it can be extensively applied in the engineering field.

A FLOW CHARACTERISTICS FOR Y-CONNECTION IN HIGH-REYNOLDS-NUMBER FLOW SYSTEM (고레이놀즈수 유동 장치에서 Y형 이음의 유동 특성)

  • Park, Jung Gun;Park, Jong Ho;Park, Young Chul
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2013
  • In nuclear power plant, the reactor cooling system has maintained high-Reynolds-number flow above 1E+07 to cool a heat generated by the reactor. To minimize uncertainty for flow calibration, it is necessary to simulate the high Reynolds' number flow. Y-connection is selected to connect four (4) parallel high flow circulation pumps for maintaining the high flow rate. This paper describes the characteristics for Y-connection by computer flow simulation. It was confirmed through the results that the pressure loss of the Y-connection was lower than that of T-connection. Also as the connection angle of Y-connection was small, as the pressure loss was low.

Improvement of Connection Force in Hydro-Embedding Process Through the Rotational Piercing of the Connection Element (하이드로 임베딩시 연결요소의 회전을 통한 체결력 개선 연구)

  • Kim, Bong-Joon;Kim, Dong-Kyu;Kim, Dong-Jin;Moon, Young-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1503-1508
    • /
    • 2006
  • To increase the applicability and productivity of hydroforming process, hydro-embedding process was developed by combining the hydro-forming process with embedding process simultaneously. It is necessary in the automotive parts to form hollow bodies with connection elements which combine one part with another. The hydro-embedding process is embedding the connection element hydraulically during the operating steps of the hydroforming. In this study, technique of rotational piercing is added on the existing hydro-embedding to increase the connection force of hydro-embedded element. To estimate the feasibility of new trial process, integrated researches on the hydro-embedding process technology have been performed by analyzing the deformed mode of the tubes and the optimal process parameters for various shapes of the connection elements.

Numerical Simulation of Electro-Mechanical Impedance Response in Cable-Anchor Connection Interlace

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.11-23
    • /
    • 2011
  • In this study, a finite element(FE) analysis on electro-mechanical impedance response of cable-anchor connection interface under various anchor force is presented. In order to achieve the objective, the following approaches are implemented. Firstly, an interface washer coupled with piezoelectric(PZT) material is designed for monitoring cable-force loss. The interface washer is a small aluminum plate on which a PZT patch is surface-bonded. Cable-force loss could be monitored by installing the interface washer between the anchor plate and the anchorage of cable-anchor connection and examining the changes of impedance of the interface washer. Secondly, a FE model for cable-anchor connection is established to examine the effect of cable-force on impedance response of interface washer. Also, the effects of geometrical and material properties of the interface washer on impedance responses under various cable-forces are investigated. Finally, validation of the FE analysis is experimentally evaluated by a lab-scale cable-anchor connection.

Connection Resistance of Mechanical Joint using Connection plate for Improvement of Connectivity between PHC piles (PHC파일간 연결 시공성 개선 이음판형 기계적 연결부의 연결저항)

  • Ahn, Jin-Hee;Moon, Hong-duk;Ha, Min-Gyun;Cho, Kwang-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.25-32
    • /
    • 2019
  • Welded joints and mechanical joints using bolt connection have been used as a pile-to-pile connecting method for PHC piles. These PHC pile joint methods may have difficulty in securing connecting quality and connecting performance in PHC pile joining process. Therefore, this study proposes a non-welded connection plate type mechanical PHC pile joint to improve the disadvantages of existing PHC pile connection methods and to secure the connection performance of PHC pile joint. Its connection performance was evaluated from nonlinear FE analysis and loading tests for actual PHC piles with suggested pile joints. From nonlinear FE analysis for the proposed PHC pile joint, it was evaluated to have sufficient connection performance under flexural, compressive, tensile, shear, and eccentric compressive load condition. PHC piles connected by the suggested connection plate type mechanical PHC pile joint show that they show stable linear behaviors for the crack moment and the flexural moment level of the PHC pile. Therefore, the proposed a non-welded connection plate type mechanical PHC pile joint can secure sufficient connection performance in PHC pile.

Dynamic increase factor for progressive collapse of semi-rigid steel frames with extended endplate connection

  • Huang, Ying;Wu, Yan;Chen, Changhong;Huang, Zhaohui;Yao, Yao
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.617-628
    • /
    • 2019
  • As an extremely destructive accident, progressive collapse is defined as the spread of an initial local failure from element to element, resulting eventually in the collapse of an entire structure or disproportionately large of it. To prevent the occurrence of it and evaluate the ability of structure resisting progressive collapse, the nonlinear static procedure is usually adopted in the whole structure design process, which considered dynamic effect by utilizing Dynamic Increase Factor (DIF). In current researches, the determining of DIF is performed in full-rigid frame, however, the performance of beam-column connection in the majority of existing frame structures is not full-rigid. In this study, based on the component method proposed by EC3 guideline, the expression of extended endplate connection performance is further derived, and the connection performance is taken into consideration when evaluated the performance of structure resisting progressive collapse by applying the revised plastic P-M hinge. The DIF for structures with extended endplate beam-column connection have been determined and compared with the DIF permitted in current GSA guideline, the necessity of considering connection stiffness in determining the DIF have been proved.

Impedance-based damage monitoring of steel column connection: numerical simulation

  • Ho, Duc-Duy;Ngo, Thanh-Mong;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.339-356
    • /
    • 2014
  • This study has been motivated to evaluate the practicality of numerical simulation of impedance monitoring for damage detection in steel column connection. In order to achieve the objective, the following approaches are implemented. Firstly, the theory of electro-mechanical (E/M) impedance responses and impedance-based damage monitoring method are outlined. Secondly, the feasibility of numerical simulation of impedance monitoring is verified for several pre-published experimental examples on steel beams, cracked aluminum beams, and aluminum round plates. Undamaged and damaged steel and aluminum beams are simulated to compare to experimental impedance responses. An aluminum round plate with PZT patch in center is simulated to investigate sensitive range of impedance responses. Finally, numerical simulation of the impedance-based damage monitoring is performed for a steel column connection in which connection bolts are damaged. From the numerical simulation test, the applicability of the impedance-based monitoring to the target steel column connection can be evaluated.

Deformation Capacity of Endplate-type Beam-to-Column Connection with New Type Mechanical Fasteners (신형상 메카니컬패스너를 사용한 엔드플레이트 형식 보-기둥 접합부의 변형성능)

  • Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.123-130
    • /
    • 2006
  • This study propose cutting body portion-high strength mechanical fasteners to improve deformation capacity of High strength bolts, which are the mechanical fasteners used for End-plate connections. And, we report that loading test results of steel beam-to-column connection using high deformation capacity-high strength bolts in accordance with SAC2000 loading program. As a result, the initial stiffness and the maximum strength of the connection using high deformation capacity-high strength bolts, are approximately the same in comparison with those of the end-plate connection using the existing high strength bolts. But the deformation capacity of the connection is more than twice as much as those.

  • PDF

Experimental Study on Flexural Behavior of PC Beam Column Joint with Spliced Strand (강선 이음길이에 따른 PC 보-기둥 접합부의 휨 거동에 관한 실험적 연구)

  • 하상수;김승훈;문정호;이리형;이강철;김익배
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.207-210
    • /
    • 2003
  • As reviewing of current trend on PC connection details, owing to effective stress transfer in the connection, it grow to increase that use of mechanical splices, reinforcements or welded splices, and prestressing. However such devices as reinforcement, mechanical splices entail not only more cost resulted from materials but also extra construction process so as to cause PC used method to lower competition against conventional method. Therefore more enhanced connection details which help working process simplified and construction cost reduced. In this research, as replace 9.3mm 7strand for reinforcement, it is attempt to devise connection detail which makes workability improve and confirm effective stress transfer in the region of connection. The experimental research is proceeded by partial tension test of specimen. The splice lengths of 7strand is decided to be variations. The flexural capability is verified to depend on spice length. An an appropriate splice length could be also determined as a precedent research on improving PC connection detail.

  • PDF