• 제목/요약/키워드: mechanical characterization

검색결과 1,174건 처리시간 0.033초

고압 유동장에서의 액적증발 특성 해석 (Fuel Droplet Vaporization Characterization in High-Pressure Flow Field)

  • 유용욱;김용모
    • 대한기계학회논문집B
    • /
    • 제22권8호
    • /
    • pp.1121-1131
    • /
    • 1998
  • The present study is numerically investigated for the high-pressure effects on the vaporization process in the convection-dominating flow field. Numerical results agree well with the available experimental data. The fuel droplet vaporization characterization is parametrically studied for the wide range of the operating conditions encountered with the high-pressure combustion process of turbocharged diesel engines.

Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature

  • Al Jabbari, Youssef S.
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권2호
    • /
    • pp.138-145
    • /
    • 2014
  • Cobalt-Chromium (Co-Cr) alloys are classified as predominantly base-metal alloys and are widely known for their biomedical applications in the orthopedic and dental fields. In dentistry, Co-Cr alloys are commonly used for the fabrication of metallic frameworks of removable partial dentures and recently have been used as metallic substructures for the fabrication of porcelain-fused-to-metal restorations and implant frameworks. The increased worldwide interest in utilizing Co-Cr alloys for dental applications is related to their low cost and adequate physico-mechanical properties. Additionally, among base-metal alloys, Co-Cr alloys are used more frequently in many countries to replace Nickel-Chromium (Ni-Cr) alloys. This is mainly due to the increased concern regarding the toxic effects of Ni on the human body when alloys containing Ni are exposed to the oral cavity. This review article describes dental applications, metallurgical characterization, and physico-mechanical properties of Co-Cr alloys and also addresses their clinical and laboratory behavior in relation to those properties.

반응소결 SiC 재료와 $SiC_f/SiC$ 복합재료의 특성 (CHARACTERIZATION OF MONOLITHIC RS-SiC AND RS-$SiC_f/SiC$ COMPOSITE MATERIALS)

  • 진준옥;이상필;이진경;윤한기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.376-380
    • /
    • 2003
  • The microstructure and the mechanical properties of RS-SiC and RS-$SiC_f/SiC$ materials have been investigated in conjunction with the content of residual silicon and porosity. The mechanical properties of RS-SiC materials suffered from the thermal exposure were also examined. RS-SiC based materials bave been fabricated using the complex matrix slurry with different composition ratios of SiC and C panicles. The characterization of RS-SiC based materials was investigated by means of SEM, EDS ~d three point bending test. Based on the mechanical property-microstructure correlation, the high temperature applicability of RS-SiC based materials was discussed.

  • PDF

Slider-Bearing Design with Micro-Machined Wavy-Cavity: Parametric Characterization of Thermohydrodynamic-Operation-Scheme

  • Ozalp B. Turker;Ozalp A. Alper
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1590-1606
    • /
    • 2006
  • Slider bearings are widely applied in mechanical systems, where the design needs cover increased load capacity, lowered friction and power consumption and creative designs. This work is governed to perform a parametric characterization, by generating a novel structure on the upper slider surface, which can formally be expressed in micro-machined wavy-form, where the individual and combined influences of various structural design parameters and boundary conditions, on the performance records, are also evaluated. Computations put forward that the contribution of the wave amplitude on power loss values is highly dependent on the level of inlet pressure; higher amplitudes are determined to increase power loss in the lowest inlet pressure case of 1.01, whereas the contrary outcome is determined in the higher inlet pressure cases of 3.01 & 5.01. Designing the slider bearing system, based on optimal load capacity, produced the optimum wave number ranges as 10-45, 7-11 and 5-8 for the pad inclinations of $5^{\circ},\;4^{\circ}$ and $3^{\circ}$ respectively.

Intentional GNSS Interference Detection and Characterization Algorithm Using AGC and Adaptive IIR Notch Filter

  • Yang, Jeong Hwan;Kang, Chang Ho;Kim, Sun Young;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권4호
    • /
    • pp.491-498
    • /
    • 2012
  • A Ground Based Augmentation System (GBAS) is an enabling technology for an aircraft's precision approach based on a Global Navigation Satellite System (GNSS). However, GBAS is vulnerable to interference, so effective GNSS interference detection and mitigation methods need to be employed. In this paper, an intentional GNSS interference detection and characterization algorithm is proposed. The algorithm uses Automatic Gain Control (AGC) gain and adaptive notch filter parameters to classify types of incoming interference and to characterize them. The AGC gain and adaptive lattice IIR notch filter parameter values in GNSS receivers are examined according to interference types and power levels. Based on those data, the interference detection and characterization algorithm is developed and Monte Carlo simulations are carried out for performance analysis of the proposed method. Here, the proposed algorithm is used to detect and characterize single-tone continuous wave interference, swept continuous wave interference, and band-limited white Gaussian noise. The algorithm can be used for GNSS interference monitoring in an excessive Radio Frequency Interference environment which causes loss of receiver tracking. This interference detection and characterization algorithm will be used to enhance the interference mitigation algorithm.

첩릿변환을 이용한 배관 결함 특성 규명 (Characterization of Pipe Defects in Torsional Guided Waves Using Chirplet Transform)

  • 김정엽;박경조
    • 한국소음진동공학회논문집
    • /
    • 제24권8호
    • /
    • pp.636-642
    • /
    • 2014
  • The sensor configuration of the magnetostrictive guided wave system can be described as a single continuous transducing element which makes it difficult to separate the individual modes from the reflected signal. In this work we develop the mode decomposition technique employing chirplet transform, which is able to separate the individual modes from dispersive and multimodal waveform measured with the magnetostrictive sensor, and to estimate the time-frequency centers and individual energies of the reflection, which would be used to locate and characterize defects. The reflection coefficients are calculated using the modal energies of the separated mode. Results from experimental results on a carbon steel pipe are presented, which show that the accurate and quantitative defect characterization could become enabled using the proposed technique.

Random topological defects in double-walled carbon nanotubes: On characterization and programmable defect-engineering of spatio-mechanical properties

  • A. Roy;K. K. Gupta;S. Dey;T. Mukhopadhyay
    • Advances in nano research
    • /
    • 제16권1호
    • /
    • pp.91-109
    • /
    • 2024
  • Carbon nanotubes are drawing wide attention of research communities and several industries due to their versatile capabilities covering mechanical and other multi-physical properties. However, owing to extreme operating conditions of the synthesis process of these nanostructures, they are often imposed with certain inevitable structural deformities such as single vacancy and nanopore defects. These random irregularities limit the intended functionalities of carbon nanotubes severely. In this article, we investigate the mechanical behaviour of double-wall carbon nanotubes (DWCNT) under the influence of arbitrarily distributed single vacancy and nanopore defects in the outer wall, inner wall, and both the walls. Large-scale molecular simulations reveal that the nanopore defects have more detrimental effects on the mechanical behaviour of DWCNTs, while the defects in the inner wall of DWCNTs make the nanostructures more vulnerable to withstand high longitudinal deformation. From a different perspective, to exploit the mechanics of damage for achieving defect-induced shape modulation and region-wise deformation control, we have further explored the localized longitudinal and transverse spatial effects of DWCNT by designing the defects for their regional distribution. The comprehensive numerical results of the present study would lead to the characterization of the critical mechanical properties of DWCNTs under the presence of inevitable intrinsic defects along with the aspect of defect-induced spatial modulation of shapes for prospective applications in a range of nanoelectromechanical systems and devices.

Synthesis of Hβ (core)/SAPO-11 (shell) Composite Molecular Sieve and its Catalytic Performances in the Methylation of Naphthalene with Methanol

  • Wang, Xiaoxiao;Guo, Shaoqing;Zhao, Liangfu
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3829-3834
    • /
    • 2013
  • $H{\beta}$ (core)/SAPO-11 (shell) composite molecular sieve was synthesized by the hydrothermal method in order to combine the advantages of $H{\beta}$ and SAPO-11 for the methylation of naphthalene with methanol. For comparison, the mechanical mixture was prepared through the blending of $H{\beta}$ and SAPO-11. The physicochemical properties of $H{\beta}$, SAPO-11, the composite and the mechanical mixture were characterized by various characterization methods. The characterization results indicated that $H{\beta}$/SAPO-11 composite molecular sieve exhibited a core-shell structure, with the $H{\beta}$ phase as the core and the SAPO-11 phase as the shell. The pore diameter of the composite was between that of $H{\beta}$ and SAPO-11. The composite had fewer acid sites than $H{\beta}$ and mechanical mixture while more acid sites than SAPO-11. The experimental results indicated that the composite exhibited high catalytic performances for the methylation of naphthalene with methanol.

띠 굽힘 시험을 통한 100 nm 두께 금 박막의 기계적 특성 평가 (Mechanical characterization of 100 nm-thick Au thin film using strip bending test)

  • 김재현;이학주;한승우;백창욱;김종만;김용권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.252-257
    • /
    • 2004
  • Nanometer-sized structures are being applied to many devices including micro/nano electronics, optoelectronics, quantum devices, MEMS/NEMS, biosensors, etc. Especially, the thin film with submicron thickness is a basic structure for fabricating these devices, but its mechanical behaviors are not well understood. The mechanical properties of the thin film are different from those of the bulk structure and are difficult to measure because of its handling inconvenience. Several techniques have been applied to mechanical characterization of the thin film, such as nanoindentation test, micro/nano tensile test, strip bending test, etc. In this study, we focus on the strip bending test because of its high accuracy and moderate specimen preparation efforts, and measure Au thin film, which is a very popular material in micro/nano electronic devices. Au film is deposited on Si substrate by evaporation process, of which thickness is 100nm. Using the strip bending test, we obtain elastic modulus, yield and ultimate tensile strength, and residual stress of Au thin film.

  • PDF