• 제목/요약/키워드: mechanical body

검색결과 2,446건 처리시간 0.027초

기계적합금화 공정에 의해 제조된 PbTe 소결체의 열전특성 (Thermoelectric Properties of PbTe Sintered Body Fabricated by Mechanical Alloying Process)

  • 이길근;정해용;이병우
    • 한국분말재료학회지
    • /
    • 제8권2호
    • /
    • pp.110-116
    • /
    • 2001
  • Abstract To investigate the effect of mechanical alloying process to thermoelectric properties of PbTe sintered body, Pb-Te mixed powder with Pb : Te : 1 : 1 composition was mechanically alloyed using tumbler-ball mill. Thermoelectric properties of the sintered body were evaluated by measuring of the Seebeck coefficient and specific electric resistivity from the room temperature to 50$0^{\circ}C$. Sintered body of only mechanically alloyed PbTe powder showed p-type behavior at the room temperature, and occurred type transition from p-type to n-type at about 30$0^{\circ}C$. PbTe sintered body which was fabricated using heat treated powder in $H_2$ atmosphere after mechanical alloying showed stable n-type behavior under 50$0^{\circ}C$. N-type PbTe sintered body fabricated by mechanical alloying process had 4 times higher power factor than that fabricated by the melt-crushing process. Application of a mechanical alloying process to fabricate of n-type PbTe thermoelectric material seemed to be useful to increase the power factor of PbTe sintered body.

  • PDF

하프 빈야사 요가 수련 전·후의 역학적 에너지 변화 - 신체분절의 에너지 기여도 및 최고무게중심과 분절 에너지의 상관관계를 중심으로 - (Change of Mechanical Energy before and after Training of Half Vinyasa Yoga - Energy Contribution of Body Segments and Correlation between Maximum COG and Segmental Energy -)

  • 유실;하종규
    • 한국운동역학회지
    • /
    • 제23권4호
    • /
    • pp.395-402
    • /
    • 2013
  • The purpose of this study was to investigate change of mechanical energy before and after training of half vinyasa yoga. Thirteen subjects (height: $163.4{\pm}3.9$ cm, body mass: $54.9{\pm}7.3$ kg, age: $20.0{\pm}0.49$ yrs) participated in this experiment. The motions of half vnyasa yoga were captured with Vicon system and parameters were calculated with Visual-3D. After training of half vinyasa yoga, the mechanical energies of body segments were increased and increments of mechanical energies in the lower segments were greater than the upper segments. The phase increments of mechanical energies increased phase 1, phase 2, and phase 3 in order. After training of half vinyasa yoga, phase contributions of body segments were similar before training of half vinyasa yoga. The contribution of mechanical energy on trunk segment in body was the greatest contribution of upper segments; also that of mechanical energy on thigh segment in body was the greatest contribution of lower segments. Before training, the coefficient of correlation between vertical center of gravity (CoGz) and mechanical energy of phase 3 was a -.559, but after training, the coefficient of correlation between CoGz and mechanical energy of phase 2 was a .587. These findings suggest that the training of half vinyasa yoga may be increasing the mechanical energies of body segments.

Mixing Enhancement/Suppression of Separated-and-Reattaching Flow by an Upstream Small Object

  • IINVMA, Yusuke;FUNAKI, Jiro;HIRATA, Katsuya
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.106-110
    • /
    • 2004
  • Generally, flow around a bluff body such as a circular cylinder is complicated compared with that around a streamlined body because of the existence of separated shear layers. Long bluff body such as a flat blunt plate is more complicated than short bluff body, because of separated-and-reattaching flow on the after bodies.(omitted)

  • PDF

Motion Control of Two Welding Mobile Robot with Seam Tracking Sensor

  • Byuong-Oh;Jeon, Yang-Bae;Suh, Jin-Ho;Oh, Myung-Suk;Kim, Sang-bong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권2호
    • /
    • pp.30-38
    • /
    • 2003
  • This paper proposed PID controller for torch slider and PD controller for motor right wheel. to control the motion of two-wheeled welding mobile robot with seam tracking sensor touched on welding line. The motion control is realized in the view of keeping constant welding velocity and precise seam tracking even though the target welding line is on straight line or curved line. The position and direction of the body of the mottle robot are controlled by using signal errors between seam tracking sensor and body positioning sensor attached on the end of torch slider and body side of the mobile robot, respectively. In turning motion, the body and the torch slider are controlled by using the kinematic model related with two motions of body turning and torch sliding. The straight locomotion is controlled according to eleven control patterns obtained from displacements between two sensors of the seam tracking sensor and the body positioning sensor. The effectiveness is proven through the experimental results fur lattice type welding line. Through the experimental results, we can see that the position value of the electrode end point and the welding velocity are controlled almost constantly both in straight and turning locomotion.

현대 무용의상에 나타난 인체의 추상화에 관한 연구 - 오스카 슐레머의 의상이론을 중심으로 - (A Study on the Abstraction of the Human Body in Contemporary Dance Costumes - Focusing on Oscar Schlemer's Costume Theory -)

  • 한경하;금기숙
    • 복식
    • /
    • 제60권10호
    • /
    • pp.133-145
    • /
    • 2010
  • The study used four basic formats classified based on the four principles on costumes discussed in the paper 'Human Beings and Arts Phenomena' by Oskar Schlemmer who studied the relationships between stage space and the human body as an analysis tool with regard to analyses on the abstraction of human body in contemporary dance costume. Abstraction of human body expressed in costume for contemporary dance is as follows: Expansions caused by unclear boundary between spaces and costumes, and the principles of three-dimensional abstract spaces based on a geometric cube change heads, trunks, arms and legs to achieve expansions. Similar mechanical shape is a type of shape made in a succession of functional principles of human body in relationships with spaces. As mechanical mechanism is added to the geometric transformation of a specific part of human body, mechanicalness is contained in it. Motion organisms are geometric simplification of moving traces in a space based on conversion into mechanical organisms based on principles of motion, and as mechanical rotation, consecutive speed caused by refraction and directionality are suggested, mobility is achieved. Immaterial shape is based on change into a metaphysical form, and it is converted into animals, plants or a third life that symbolize body parts. It has metaphysical significance in each body part and extends sensibility. As a result of the study, development into abstract succession and a techno art mode has been confirmed. Combination of geometric cubic figures with the organic human body and configuration of the human body pursued by Oskar Schlemmer's geometric abstraction through the proactive accommodation of mechanical aesthetics has been succeeded and expressed in the contemporary dance costumes.

복합재료 Body Panel의 특성평가 (Characteristics of Composite Body Panel)

  • 남현욱;변현중;이용태;한경섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.109-114
    • /
    • 2000
  • A research fur development of composite body panel is in progress for lightening tare. In this study, experiments on estimation of mechanical properties of LPMC (Low pressure molding compound) including fatigue and impact characteristics were carried out. The experiments show that LPMC satisfied basic requirements of car body panel. The fatigue life of LPMC was predicted and the material degradation due to fatigue and impact were fined out.

  • PDF

도자기 소지와 유약의 잔류 응력이 기계적 강도에 미치는 영향에 관한 연구 (A Study on the Effect of Residual Stress between Body and Glaze of Pottery on the Mechanical Strength)

  • 이진하;나은상;최성철
    • 한국재료학회지
    • /
    • 제9권2호
    • /
    • pp.181-187
    • /
    • 1999
  • In this study, the effect of residual stress on mechanical strength was investigated with 1 kind of whiteware body and 4 kinds of glazes which are produced in succeeding ceramic art place. Using dipping method, the body was coated for different times in order to manipulate the coating thickness and sintered in the different temperatures ($1200^{\circ}C$, $1250^{\circ}C$, $1300^{\circ}C$, $1350^{\circ}C$) for two thus hours. The sintered bodies were characterized by XRD, EPMA, FEM and UTM in order to study the forming of reaction layer between body and glazes, residual stresses and the effects of residual stresses on mechanical strength of pottery. At $1300{\circ}C$, we obtained maximum density and mechanical strength. By the finite element method, the residual stresses in surface of body were minimum in specific thickness of glazes and the mechanical strength of body in that thickness of glazes showed maximum when the firing temperature was settled.

  • PDF

THICKNESS OPTIMIZATION OF AN AUTOMOBILE BODY FOR NATURAL FREQUENCY MAXIMIZATION

  • Panganiban, Henry;Jang, Gang-Won;Chung, Tae-Jin;Choi, Young-Min
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.572-577
    • /
    • 2007
  • The paper presents design optimization of an automobile body for dynamic stiffness improvement. The thicknesses of plates making-up the monocoque body of an automobile were employed as design variables for optimization and the objective was to increase the first torsional and bending natural frequencies. By allotting one design variable to each plate of the body, compared to previous works based on element-wise design variables, design space of optimization was reduced to a large extent and numerical instabilities such as checkerboard pattern was efficiently evaded. The method resulted to a considerable amount of increase in the automobile body's torsional and bending natural frequencies. Considering manufacturability of the optimized result, the converged values of plate thicknesses were approximated to commercially-available values by appropriately reflecting their design sensitivities.

  • PDF

차체의 유연성을 고려한 차량 승차감 해석 (Analysis of Ride Comfort for an Automobile with flexible Vehicle Body)

  • 김정훈;최광성;박성용;이장무;강상욱;강주석
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.121-128
    • /
    • 2005
  • In most researches on the ride comfort analysis of passenger vehicles, the flexibility of the vehicle body has been not considered as an important factor, because the resonance frequencies of the vehicle body related to pitching, yawing and rolling motions are below 10Hz while the resonance frequencies of the vehicle body related to the flexibility are above 20Hz approximately. Nevertheless, the paper shows that the consideration of the local flexibility (or local stiffness) of the 4 corners on which shock absorbers are mounted influences the ride comfort. A simple beam model is devised to qualitatively examine the effect of the change of the local stiffness of the vehicle body on the ride comfort. Based on the results obtained from the analysis of the one-dimensional model, multi-body dynamic analysis considering the flexibility of the vehicle body is performed using ADAMS and MSC/NASTRAN. Natural frequencies and mode shapes computed by MSC/NASTRAN are used as input data for multi-body dynamic analysis in ADAMS. Through simulations using ADAMS, it has been found that the ride comfort can be improved by changing the local stiffness of the vehicle body and that the simulation results agree with experiment results.

Comparative study of turbulent flow around a bluff body by using two- and three-dimensional CFD

  • Ozdogan, Muhammet;Sungur, Bilal;Namli, Lutfu;Durmus, Aydin
    • Wind and Structures
    • /
    • 제25권6호
    • /
    • pp.537-549
    • /
    • 2017
  • In this study, the turbulent flow around a bluff body for different wind velocities was investigated numerically by using its two- and three-dimensional models. These models were tested to verify the validity of the simulation by being compared with experimental results which were taken from the literature. Variations of non-dimensional velocities in different positions according to the bluff body height were analysed and illustrated graphically. When the velocity distributions were examined, it was seen that the results of both two- and three-dimensional models agree with the experimental data. It was also seen that the velocities obtained from two-dimensional model matched up with the experimental data from the ground to the top of the bluff body. Particularly, compared to the front part of the bluff body, results of the upper and back part of the bluff body are better. Moreover, after comparing the results from calculations by using different models with experimental data, the effect of multidimensional models on the obtained results have been analysed for different inlet velocities. The calculation results from the two-dimensional (2D) model are in satisfactory agreement with the calculation results of the three-dimensional model (3D) for various flow situations when comparing with the experimental data from the literature even though the 3D model gives better solutions.