• Title/Summary/Keyword: mechanical behaviors

Search Result 1,733, Processing Time 0.03 seconds

Experimental verification of shear and frictional characteristics in end milling (엔드밀링시 전단 및 마찰 특성의 실험적 검증)

  • Lee, Y. M.;S. H. Yang;M. Chen;S. I. Jang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1789-1794
    • /
    • 2003
  • As a new approach to analyze shear behaviors in the shear plane and chip-tool friction behaviors in the chip-tool contact region during an end milling process, this paper introduces a method to transform an end milling process to an equivalent oblique cutting process. In this approach, varying undeformed chip thicknesses and cutting forces in the up-and down-end milling process are replaced with the equivalent ones of oblique cutting. Accordingly, in the current paper, the shear and friction characteristics of end milling operations, up- and down-end milling, have been analyzed based on the equivalent oblique cutting models. Two series of cutting tests, up- and down-end milling tests and the equivalent oblique cutting tests to that, have been carried out to verify the validity of the analyses. And using the results of cutting tests the cutting characteristics of the up- and down-end milling processes have been thoroughly investigated.

  • PDF

Coal pyrolysis behaviors at supercritical CO2 conditions

  • Hakduck Kim;Jeongmin Choi;Heechang Lim;Juhun Song
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2022
  • In this study, a product gas yield and carbon conversion were measured during the coal pyrolysis. The pyrolysis process occurred under two different atmospheres such as subcritical (45 bar, 10℃) and supercritical CO2 condition (80 bar, 35℃). Under the same pressure (80 bar), the atmosphere temperature increased from 35℃ to 45℃ to further examine temperature effect on the pyrolysis at supercritical CO2 condition. For all three cases, a power input supplied to heating wire placed below coal bed was controlled to make coal bed temperature constant. The phase change of CO2 atmosphere and subsequent pyrolysis behaviors of coal bed were observed using high-resolution camcorder. The pressure and temperature in the reactor were controlled by a CO2 pump and heater. Then, the coal bed was heated by wire heater to proceed the pyrolysis under supercritical CO2 condition.

Thermal, Curing, Elastic, and Mechanical Properties of Ethylene Propylene Diene Monomer/Polybutadiene/Carbon Black Composites

  • Tae-Hee Lee;Keon-Soo Jang
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.142-151
    • /
    • 2023
  • In this study, we investigate the thermal and mechanical properties of composites comprising ethylene propylene diene monomer (EPDM) and polybutadiene (PB) obtained using carbon black (CB) as a reinforcing and compatibilizing filler. Owing to the significance of elastomeric materials in various industrial applications, blending of EPDM and PB has emerged as a strategic method to optimize the material properties for specific applications. This study offers insights into the blend composition, its microstructure, and the resulting macroscopic behaviors, focusing on the synergetic effects of composite materials. Furthermore, this study delves into curing and rheological behaviors, crosslink densities, and mechanical, thermal, and elastic properties of the elastomeric composites. Through systematic exploration, we believe that this study will be beneficial to material scientists and engineers working on developing advanced elastomeric composites.

Interfacial mechanical behaviors of RC beams strengthened with FRP

  • Deng, Jiangdong;Liu, Airong;Huang, Peiyan;Zheng, Xiaohong
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.577-596
    • /
    • 2016
  • FRP-concrete interfacial mechanical properties determine the strengthening effect of RC beams strengthened with FRP. In this paper, the model experiments were carried out with eight specimens to study the failure modes and the strengthening effect of RC beams strengthened with FRP. Then a theoretical model based on interfacial performances was proposed and interfacial mechanical behaviors were studied. Finite element analysis confirmed the theoretical results. The results showed that RC beams strengthened with FRP had three loading stages and that the FRP strengthening effects were mainly exerted in the Stage III after the yielding of steel bars, including the improvement of the bearing capacity, the decreased ultimate deformation due to the sudden failure of FRP and the improvement of stiffness in this stage. The mechanical formulae of the interfacial shear stress and FRP stress were established and the key influence factors included FRP length, interfacial bond-slip parameter, FRP thickness, etc. According to the theoretical analysis and experimental data, the calculation methods of interfacial shear stress at FRP end and FRP strain at midspan were proposed. When FRP bonding length was shorter, interfacial shear stress at FRP end was larger that led to concrete cover peeling failure. When FRP was longer, FRP reached the ultimate strain and the fracture failure of FRP occurred. The theoretical results were well consistent with the experimental data.

Comparative Study on the Nociceptive Responses Induced by Whole Bee Venom and Melittin

  • Shin, Hong-Kee;Lee, Kyung-Hee;Lee, Seo-Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.5
    • /
    • pp.281-288
    • /
    • 2004
  • The present study was undertaken to confirm whether melittin, a major constituent of whole bee venom (WBV), had the ability to produce the same nociceptive responses as those induced by WBV. In the behavioral experiment, changes in mechanical threshold, flinching behaviors and paw thickness (edema) were measured after intraplantar (i.pl.) injection of WBV (0.1 mg & 0.3 mg/paw) and melittin (0.05 mg & 0.15 mg/paw), and intrathecal (i.t.) injection of melittin $(6{\mu}g)$. Also studied were the effects of i.p. (2 mg & 4 mg/kg), i.t. $(0.2{\mu}g\;&\;0.4{\mu}g)$ or i.pl. (0.3 mg) administration of morphine on melittin-induced pain responses. I.pl. injection of melittin at half the dosage of WBV strongly reduced mechanical threshold, and increased flinchings and paw thickness to a similar extent as those induced by WBV. Melittin- and WBV-induced flinchings and changes in mechanical threshold were dose- dependent and had a rapid onset. Paw thickness increased maximally about 1 hr after melittin and WBV treatment. Time-courses of nociceptive responses induced by melittin and WBV were very similar. Melittin-induced decreases in mechanical threshold and flinchings were suppressed by i.p., i.t. or i.pl. injection of morphine. I.t. administration of melittin $(6{\mu}g)$ reduced mechanical threshold of peripheral receptive field and induced flinching behaviors, but did not cause any increase in paw thickness. In the electrophysiological study, i.pl. injection of melittin increased discharge rates of dorsal horn neurons only with C fiber inputs from the peripheral receptive field, which were almost completely blocked by topical application of lidocaine to the sciatic nerve. These findings suggest that pain behaviors induced by WBV are mediated by melittin-induced activation of C afferent fiber, that the melittin-induced pain model is a very useful model for the study of pain, and that melittin-induced nociceptive responses are sensitive to the widely used analgesics, morphine.

Delamination behaviors of GdBCO CC tapes under different transverse loading conditions

  • Gorospe, Alking B.;Bautista, Zhierwinjay M.;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.13-17
    • /
    • 2015
  • In superconducting coil applications particularly in wet wound coils, coated conductor (CC) tapes are subjected to different type of stresses. These include hoop stress acting along the length of the CC tape and the Lorentz force acting perpendicular to the CC tape's surface. Since the latter is commonly associated with delamination problem of multi-layered CC tapes, more understanding and attention on the delamination phenomena induced in the case of coil applications are needed. Difference on the coefficient of thermal expansion (CTE) of each constituent layer of the CC tape, the bobbin, and the impregnating materials is the main causes of delamination in CC tapes when subjected to thermal cycling. The CC tape might also experience cyclic loading due to the energizing scheme (on - off) during operation. In the design of degradation-free superconducting coils, therefore, characterization of the delamination behaviors including mechanism and strength in REBCO CC tapes becomes critical. In this study, transverse tensile tests were conducted under different loading conditions using different size of upper anvils on the GdBCO CC tapes. The mechanical and electromechanical delamination strength behaviors of the CC tapes under transverse tensile loading were examined and a two-parameter Weibull distribution analysis was conducted in statistical aspects. As a result, the CC tape showed similar range of mechanical delamination strength regardless of cross-head speed adopted. On the other hand, cyclic loading might have affected the CC tape in both upper anvil sizes adopted.

A Study on Characteristics of Indoor- Air-Quality in Interior Space Equipped with System Air-Conditioner (시스템 에어컨 설치 공간의 실내공기질 특성에 관한 연구)

  • Lee, Sang-Won;Kim, Jong-Min;Yeum, Seung-Won;Cho, Dae-Gun;Choi, Jae-Boong;Kim, Seok-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.5
    • /
    • pp.304-313
    • /
    • 2008
  • This paper investigates the indoor-air-quality (IAQ) characteristics of the interior space equipped with system air-conditioner. The behaviors of individual variables such as temperature, humidity and concentration of carbon dioxide ($CO_2$) that influence on IAQ of the interior space were characterized under various cooling conditions by numerical and experimental studies. The numerical analysis predicting the temperature behavior of the interior space was conducted, and its results showed a good agreement with the experimental ones. The $CO_2$ concentration and humidity were measured and their time dependent behaviors were monitored and analyzed. From the results, it was found that there existed the differences of the time-dependent behaviors of IAQ variables according to the locations. In addition, it is demonstrated that the large discharge angle of $45^{\circ}$ made the temperature profile more irregular and the high discharge flow of 5.34 m/s produced similar temperature profiles at three different sensing locations. Finally, the humidity of interior space was less sensitive to the changes of the air cooling conditions than the case of temperature and the $CO_2$ concentration increase mainly depended on the number of individuals inside the space.

Analysis of Mechanical Response of Two-phase Polycrystalline Microstructures with Distinctive Topology of Phase Clustering (2상 다결정 미세구조의 상 분포 위상에 따른 역학적 거동 분석)

  • Chung, Sang-Yeop;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • An approach to understand the phase distribution in a multi-phase polycrystalline material is important since it can affect material properties and mechanical behaviors. A proper method is needed to describe the phase distribution. For this purpose, contiguity and probability functions(two-point correlation and lineal-path functions) are investigated for representing the phase distributions of microstructures. The mechanical behaviors are evaluated using the finite element method. The characteristics of probability functions and mechanical reponses of virtual samples are represented. It is confirmed that the topology of phase clustering affects the mechanical behavior of materials and that the strength is reduced as the clustering size increases.

Dynamic Analysis of the Structures under Dynamic Distributed Loads Using Spectral Element Method (스펙트럴요소법을 이용한 동적분포하중을 받는 구조물의 동적해석)

  • Lee, U-Sik;Lee, Jun-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1773-1783
    • /
    • 1996
  • Finite element method(FEM) is one of the most popularly used method analyzing the dynamic behaviors of structures. But unless number of finite elements is large enough, the results from FEM some what different from exact analytical solutions, especially at high frequency range. On the other hand, as the spectral analysis method(SAM) deals directly with the governing equations of a structure, the results from this melthod cannot but be exact regardless of any frequency range. However, the SAM can be applied only to the case where a structure is subjected to the concentrated loads, despite a structure could be unddergone distributed loads more generally. In this paper, therefore, new spectral analysis algorithm is introduced through the spectral element method(SEM), so that it can be applied to anlystructures whether they are subjected to the concentrated loads or to the distributed loads. The results from this new SEM are compared with both the results from FEM and the exact analytical solutions. As expected, the results from new SEM algorithm are found to be almost identical to the exact analytical solutions while those from FEM are not agreed well with the exact analytical solutions as the mode number increases.

Effect of Milling Time on the Microstructure and Phase Transformation Behaviors of Ni-B Powder During Mechanical Alloying Process (Ni-B 분말의 기계적 합금화 과정에서 밀링시간에 따른 미세조직과 상변화 거동)

  • Kim, Jung-Geun;Lee, Wook-Jin;Park, Sung-Kyun;Park, Ik-Min;Park, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.496-501
    • /
    • 2011
  • In this study, the effect of milling time on the microstructure and phase transformation behaviors of Ni-12 wt.%B powders was investigated using vibratory ball milling process. X-ray diffraction patterns showed that the phase transformation of mixed Ni-B elemental powder occurred after 50 hours of milling, with a formation of nickel boride phases. Through the study of microstructures in mechanical alloying process, it was considered that ball milling strongly accelerates solid-state diffusions of the Ni and B atoms during mechanical alloying process. The results of X-ray photoelectron spectroscopy showed that most of B atoms in the powder were linked to Ni with a formation of nickel boride phases after 200 hours of milling. It was finally concluded that mechanical alloying using ball milling process is feasible to synthesize fine and uniform nickel boride powders.