DOI QR코드

DOI QR Code

Effect of Milling Time on the Microstructure and Phase Transformation Behaviors of Ni-B Powder During Mechanical Alloying Process

Ni-B 분말의 기계적 합금화 과정에서 밀링시간에 따른 미세조직과 상변화 거동

  • Kim, Jung-Geun (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Wook-Jin (Department of Materials Science and Engineering, Pusan National University) ;
  • Park, Sung-Kyun (Department of Physics, Pusan National University) ;
  • Park, Ik-Min (Department of Materials Science and Engineering, Pusan National University) ;
  • Park, Yong-Ho (Department of Materials Science and Engineering, Pusan National University)
  • Received : 2011.09.01
  • Accepted : 2011.10.15
  • Published : 2011.12.28

Abstract

In this study, the effect of milling time on the microstructure and phase transformation behaviors of Ni-12 wt.%B powders was investigated using vibratory ball milling process. X-ray diffraction patterns showed that the phase transformation of mixed Ni-B elemental powder occurred after 50 hours of milling, with a formation of nickel boride phases. Through the study of microstructures in mechanical alloying process, it was considered that ball milling strongly accelerates solid-state diffusions of the Ni and B atoms during mechanical alloying process. The results of X-ray photoelectron spectroscopy showed that most of B atoms in the powder were linked to Ni with a formation of nickel boride phases after 200 hours of milling. It was finally concluded that mechanical alloying using ball milling process is feasible to synthesize fine and uniform nickel boride powders.

Keywords

References

  1. V. M. Azahazha, V. E. Semenenko and N. N. Pilipenko: Powder Metall. Met. Ceram., 46 (2007) 32. https://doi.org/10.1007/s11106-007-0006-8
  2. N. Ueda, T. Mizukoshi, K. Demizu, T. Sone, A. Ikenaga and M. Kawamoto: Surf. Coat. Technol., 126 (2000) 25. https://doi.org/10.1016/S0257-8972(00)00517-X
  3. D. Acosta, N. Ramirez, E. Erdmann, H. Destefanis and E. Gonzo: Catal. Today., (2008) 133.
  4. C. C. Koch, In: R. W. Cahn, P. Haasen and E. J. Kramer, Editors: Mater. Sci. Technol. Vol. 15, VCH, Weinheim, PA (1991) 193.
  5. C. C. Koch: Mater. Sci. Eng., A244(1) (1998) 39.
  6. C. Suryanarayana: Mater. Sci. Eng., A304-306 (2001) 151.
  7. J.-W. Song, H.-S. Kim, S.-S. Kim, J.-M. Koo and S.-J. Hong: J. Korean Powder Metall. Inst., 17(3) (2010) 242 (Korean). https://doi.org/10.4150/KPMI.2010.17.3.242
  8. Yu. N. Bekish, T. V. Gaevskaya, L. S. Tsybulskaya, G. Y. Lee and M. Kim: Prot. Met. Phys. Chem. Surf., 46(3) (2010) 325. https://doi.org/10.1134/S2070205110030068
  9. J. Legrand, A. Taleb, S. Gota, M, J. Guittet and C. Petit: Langmuir, 18 (2002) 4131. https://doi.org/10.1021/la0117247
  10. E. A. Il'inchik: J. Appl. Spectroscopy, 75 (2008) 883. https://doi.org/10.1007/s10812-009-9116-z
  11. Lixia Yanga, Guanghui Mina, Huashun Yua, Jiande Hana and Y. B. Padernob: Ceram. Int., 31 (2005) 271. https://doi.org/10.1016/j.ceramint.2004.05.014
  12. O. Teppo and P. Taskinen: Mater. Sci. Technol., 9 (1993) 205. https://doi.org/10.1179/026708393790171971