• Title/Summary/Keyword: mechanical assessment

Search Result 1,344, Processing Time 0.027 seconds

Study on Temperature-Dependent Mechanical Properties of Chloroprene Rubber for Finite Element Analysis of Rubber Seal in an Automatic Mooring System (자동계류시스템 고무 씰 유한요소해석을 위한 고무 소재의 온도별 기계적 특성 연구)

  • Son, Yeonhong;Kim, Myung-Sung;Jang, Hwasup;Kim, Songkil;Kim, Yongjin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.157-163
    • /
    • 2022
  • An automatic mooring system for a ship consists of a vacuum suction pad and a mechanical part, enabling quick and safe mooring of a ship. In the development of a mooring system, the design of a vacuum suction pad is a key to secure enough mooring forces and achieve stable operation of a mooring system. In the vacuum suction pad, properly designing its rubber seal determines the performance of the suction pad. Therefore, it is necessary to appropriately design the rubber seal for maintaining a high-vacuum condition inside the pad as well as achieving its mechanical robustness for long-time use. Finite element analysis for the design of the rubber seal requires the use of an appropriate strain energy function model to accurately simulate mechanical behavior of the rubber seal material. In this study, we conducted simple uniaxial tensile testing of Chloroprene Rubber (CR) to explore the strain energy function model best-fitted to its experimentally measured engineering strain-stress curves depending on various temperature environments. This study elucidates the temperature-dependent mechanical behaviors of CR and will be foundational to design rubber seal for an automatic mooring system under various temperature conditions.

Creep-Fatigue Crack Growth Behavior of a Structure with Crack Like Defects at the Welds

  • Lee, Hyeong-Yeon;Kim, Seok-Hoon;Lee, Jae-Han;Kim, Byung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2136-2146
    • /
    • 2006
  • A study on a creep-fatigue crack growth behavior has been carried out for a cylindrical structure with weldments by using a structural test and an evaluation according to the assessment procedures. The creep-fatigue crack growth behavior following the creep-fatigue crack initiation has been assessed by using the French A16 procedure and the conservatism for the present structural test has been examined. The structural specimen is a welded cylindrical shell made of 316 L stainless steel (SS) for one half of the cylinder and 304 SS for the other half. In the creep-fatigue test, the hold time under a tensile load which produces the primary nominal stress of 45 MPa was one hour at $600^{\circ}C$ and creep-fatigue loads of 600 cycles were applied. The evaluation results for the creep-fatigue crack propagation were compared with those of the observed images from the structural test. The assessment results for the creep-fatigue crack behavior according to the French Al6 procedure showed that the Al6 is overly conservative for the creep-fatigue crack propagation in the present case with a short hold time of one hour.

Determination of Relationship between Thermal and Mechanical Properties of Wood Material

  • Ozcan, Cemal;Korkmaz, Mustafa
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.408-417
    • /
    • 2019
  • Non-destructive test techniques are becoming increasingly important for assessment and maintenance. These techniques are very useful for assessment of materials such as wood, whose performance can vary considerably depending on the conditions of use. It is possible to estimate some mechanical properties of a material by determining the movement of energy through the material with the help of these techniques. In this study, it was investigated whether the wood material could be tested nondestructively by the heat energy produced by a source. The correlations between the thermal conductivity and mechanical properties of Scots pine (Pinus sylvestris L.) and sessile oak (Quercus petraea L.) woods were investigated. The thermal conductivity (TC), density, modulus of rupture (MOR), compression strength (CS), and modulus of elasticity (MOE) values of samples were measured according to the related standards and these values were correlated with each other. The linear and multiple regression tests were employed to determine the correlation between thermal conductivity and mechanical properties. The results showed that there is a very strong correlation between thermal conductivity and both density and MOR values. However, the correlations between TC and both MOE and CS were moderate. The results of this study suggest that the thermal conductivity value can be used to estimate the density and some mechanical properties of wood.

Failure Probability Evaluation of Pressure Tube using the Probabilistic Fracture Mechanics (확률론적 파괴역학 기법을 이용한 압력관의 파손확률 평가)

  • Son, Jong-Dong;Oh, Dong-Joon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.7-12
    • /
    • 2007
  • In order to evaluate the integrity of Zr-2.5Nb pressure tubes, probabilistic fracture mechanics(PFM) approach was employed. Failure assessment diagram(FAD), plastic collapses, and critical crack lengths(CCL) were used for evaluating the failure probability as failure criteria. The Kr-FAD as failure assessment diagram was used because fracture of pressure tubes occurred in brittle manner due to hydrogen embrittlement of material by deuterium fluence. The probabilistic integrity evaluation observed AECL procedures and used fracture toughness parameters of EPRI and recently announced theory. In conclusion, the probabilistic approach using the Kr-FAD made it possible to determine major failure criterion in the pressure tube integrity evaluation.

Defect Assessment for Integrity Evaluation of CANDU Pressure Tubes (CANDU 압력관 건전성평가를 위한 결함해석)

  • 김영진;석창성;박윤원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.731-740
    • /
    • 1995
  • The objective of this paper is to develop defect assessment technology for integrity evaluation of CANDU pressure tubes. In fracture mechanics analysis, three-dimensional and two-dimensional (line-spring model) finite element analyses were performed to obtain the stress intensity factor for axial and circumferential surface cracks. In leak before break (LBB) analysis, heat transfer analyses for through-wall cracks were performed by considering the cooling effect and the LBB application time was computed. It was shown that the analytical results obtained in this study provide less-conservative but accurate solution for defect assessment of CANDU pressure tubes.

Application of FAD on Pressure Tube for the Probabilitic Integrity Assessment (파손평가선도를 이용한 압력관 결함의 확률론적 건전성 평가)

  • Kwak, Sang-Log;Wang, Jong-Bae;Park, Youn-Won;Lee, Joon-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.289-295
    • /
    • 2004
  • Pressure tubes are major component of nuclear reactor, but only selected samples are periodically examined due to numerous numbers of tubes. Current in-service inspection result show there is high probability of flaw existence at uninspected pressure tube. Probabilistic analysis is applied in this study for the integrity assessment of uninspected pressure tube. All the current integrity evaluations procedures are based on conventional deterministic approaches. So it is expected that the results obtained are too conservative to perform a rational evaluation of lifetime. More realistic failure criteria, based on FAD are also proposed for the probabilistic analysis. As a result of this study failure probabilities for various conditions are calculated, and examined application of FAD and LBB concept.

Improvement of Passenger Airbag Based on the Injury Assessment of the 5th Percentile Female Dummy (작은 체형의 여성 승객을 고려한 조수석 에어백의 설계 개선)

  • Kwon, Yul;Kim, Kwon-Hee;Son, Chang-Kyu;Kim, Hyung-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.1-7
    • /
    • 2012
  • Automobile airbag deployment process has been studied with MADYMO software. Based on the FMVSS208 and USNCAP(United States New Car Assessment Program) regulations, four parameters were chosen for the design improvement with reference to the 5th percentile female passenger dummy: time to fire, vent hole size, tether length and tank test pressure of inflator. Sensitivity analyses based on orthogonal arrays show that enhanced protection of small females can be achieved with improved USNCAP rating within the boundary of FMVSS 208.

Definition of Digital Twin Models for Prediction of Future Performance of Bridges (교량의 장기성능 예측을 위한 디지털 트윈모델 정의)

  • Shim, Chang-Su;Jeon, Chi Ho;Kang, Hwi Rang;Dang, Ngoc Son;Lon, Sokanya
    • Journal of KIBIM
    • /
    • v.8 no.4
    • /
    • pp.13-22
    • /
    • 2018
  • Future performance prediction of bridges is challenging task for structural engineers. Well-organized information from design, construction and operation stages is essential for the assessment of structures. Digital twin model is a new concept to realize more reliable data platform for management of infrastructures. Damage history including degradation of material, cracking, corrosion, etc. needs to be accumulated in the digital model. The digital model is linked to the analysis model for the assessment of structural performance considering changed mechanical properties of structural components. In this paper, initial definition digital twin model of a PSC-I girder bridge is proposed.

A Study on Status of Domestic Machine Tools Remanufacturing Technology Development and Improvement of Standard Process (국내 공작기계 재제조 기술개발 현황 및 표준공정 개선방안 연구)

  • Sung-woo Shin;Sang-Seok Seol;Young-Hwa Roh;Hyun-Su Kim;Min-Seong Park;Won-Jee Chung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.415-424
    • /
    • 2024
  • This study analyzes trends and characteristics of the machine tool remanufacturing industry and proposes a standard process that considers environmental impact assessment during the remanufacturing process. First, trends in remanufacturing and environmental regulations are reviewed. And the current status of the machine tool remanufacturing industry and cases of national R&D projects related to machine tools are analyzed. Machine tool remanufacturing has a high resource saving effect, and remanufacturing is carried out as a finished product rather than as a part. And the scope of remanufacturing work is very wide due to the performance improvement of the machine and the addition of features. In order for the machine tool remanufacturing industry to be competitive, it is necessary to create products with high added value. In addition, in order to respond to international environmental regulations, it is necessary to secure related data by conducting an environmental impact assessment together during remanufacturing.