• Title/Summary/Keyword: mechanical and thermal properties

Search Result 2,688, Processing Time 0.036 seconds

Comparison of hand, thermal and optical properties of woven fabrics made of triangular and circular shaped filaments (삼각사와 원형사로 제직된 직물의 태, 열적성질 및 광학적 성질의 비교)

  • 심현주;홍경아
    • Science of Emotion and Sensibility
    • /
    • v.5 no.3
    • /
    • pp.47-52
    • /
    • 2002
  • The handle of fabrics including tactility and sense of visuality are closely related to the factors governing the preferences of end-users. This study shows the change of mechanical properties, thermal properties and optical properties by comparing two fabrics which are woven with circular shaped filaments and with triangular ones. The fabric mechanical characteristics required for primary hand values were evaluated with the KES-FB system. The mechanical properties measured by KES-FB system shows that fabrics made of circular filaments are greater than those made of triangular ones. The thermal properties measured by KES-F7(Thermo Labo II) system shows that the values of the initial maximum value(qmax) and the thermal conductivity(λ) are higher in the fabric made of triangular shaped ones. When the light rays tall on a surface, the fabric made of triangular filaments shows more lustrous than circular ones.

  • PDF

Effect of Si Addition on Microstructure, Mechanical Properties and Thermal Conductivity of the Extruded Al 6013 Alloy Systems

  • Yoo, Hyo-Sang;Kim, Yong-Ho;Lee, Byoung-Kwon;Ko, Eun-Chan;Son, Hyeon-Taek
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.403-407
    • /
    • 2022
  • This research investigated the effect of Si addition on the microstructure, mechanical properties, electric and thermal conductivity of as-extruded Al 6013 alloys. As the content of Si increased, the area fraction of the second phase increased. As the Si content increased, the average grain size decreased remarkably, from 182 (no Si addition) to 142 (1.5Si), 78 (3.0Si) and 77 ㎛ (4.5Si) due to dynamic recrystallization by the dispersed second particles in the aluminum matrix during the hot extrusion. As the Si content increased, the yield strength and ultimate tensile strength increased. The maximum values of yield strength and ultimate tensile strength were 224 MPa and 103 MPa for the 6013-4.5Si alloy. As the amount of Si added increased, the electrical and thermal conductivity decreased. The electrical and thermal conductivity of the Al6013-4.5Si alloy were 44.0 % IACS and 165.0 W/mK, respectively. The addition of Si to Al 6013 alloy had a significant effect on its thermal conductivity and mechanical properties.

Characteristic Studies of Plasma Treated unidirectional Hildegardia Populifolia Fabric

  • Prasad, C. Venkata;Lee, D.W.;Sudhakara, P.;Jagadeesh, D.;Kim, B.S.;Bae, S.I.;Song, J.I.
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.54-59
    • /
    • 2013
  • This study deals with effect of plasma treatment on the properties of unidirectional ligno cellulosic fabric Hildegardia Populofolia (HDP) fabric. Thermal stability of the fabric was determined by differential scanning calorimetry (DSC) and Thermo gravimetric analysis (DSC). Morphological properties was analyzed by SEM analysis and found that the surface was rough upon plasma treatment which provides good interfacial adhesion with matrix during composite fabrication. Thermal stability and mechanical properties of the plasma treated fabric slightly increases compare to alkali and untreated fabric. It was observed that tensile properties of the fabric increases upon plasma treatment due to the formation of rough surface. SEM analysis indicates formation of rough surface on plasma treatment which helps in increasing the interfacial interaction between the matrix (hydrophobic) and fabric (hydrophilic).

Analysis of Pressure Plate Behavior of a Clutch Including Thermal and Mechanical Material Properties (기계적 및 열적 물성을 고려한 클러치 압력판의 거동해석)

  • Hur, Man-Dae;Lee, Sang-Uk;Kim, Gug-Yong;Kang, Sung-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.524-532
    • /
    • 2009
  • In the mechanical clutches, the pressure plate is one of the important parts for transferring the power and reducing the vibration. Instead of gray and ductile irons, CGI(Compacted Graphite Cast Iron) is concerned to be the replacement recently. A thermo-mechanical coupled analysis was performed to investigate the behavior of the pressure plate for manual clutches. Thermal and mechanical properties of three kinds of cast irons were obtained from the mechanical experiments and referred other technical reports. The results of FEM analysis, were well match with the experimental ones. In this designated FEM method, temperature distribution, stress distribution and thermal deformation were successfully gained and these results will help to design the pressure plate which was made by cast irons including CGI.

Effect of gypsum content on the properties of PVC/Gypsum polymer blend material (PVC/Gypsum 복합체에서 Gypsum 의 영향)

  • N. V. Gian;Thai Hoan;Kim, M. Y.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.221-224
    • /
    • 2003
  • Polyvinyl chloride (PVC)/gypsum Polymer blend materials were prepared by melt blending of PVC with gypsum and additives. Effect of gypsum content on the properties of PVC/gypsum Polymer blend material was studied by investigating physico-mechanical properties, thermal properties and morphology development. It was found that the replacement of gypsum for methylene-butadiene-sarene (MBS) component in PVC/gypsum polymer blend material enhanced the tensile strength, but gradually decreased its impact strength. Besides, with the increase of gypsum content, the elongation at break of material gradually decreased. The Presence of the different gypsum contents made a shift of g1ass transition temperature and increased the thermal stability as well as the processing temperature range of polymer blends. The observation of morphology, the results of the physico-mechanical properties and thermal properties proved simultaneously that PVC/gypsum Polymer blend material with the gypsum content of 22.56 wt.% reached the optimum results among five kinds of PVC/gypsum Polymer blend materials investigated.

  • PDF

Effect of Adding SiO2 and Al2O3 on Mechanical Properties of Zircon (SiO2와 Al2O3 첨가가 지르콘의 기계적 특성에 미치는 영향)

  • Cho, Bum-Rae
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.220-224
    • /
    • 2011
  • Zircon has excellent thermal, chemical, and mechanical properties, but it is hard to make a dense sintered product because of dissociation during the sintering process. This study analyzes how the addition of $SiO_2$ and $Al_2O_3$ affects the mechanical properties of sintered zircon, particularly in regards to reducing the thermal dissociation and improving the mechanical properties of $ZrSiO_4$. Zircon specimens containing different amounts of $SiO_2$ and $Al_2O_3$ were prepared and sintered to observe how the mechanical properties of $ZrSiO_4$ changed according to the differing amount of $SiO_2$ and $Al_2O_3$. The $ZrSiO_4$ that was used for the starting material was ground by ball mill to an average particle size of 3 ${\mu}m$. The $SiO_2$ and $Al_2O_3$ that was used for additives were ground to an average particle size of 3 ${\mu}m$ and 0.5 ${\mu}m$, respectively. Adding $SiO_2$ resulted in transformation in the liquid phase at high temperatures, which had little effect on suppressing the thermal dissociation but enhanced the mechanical properties of $ZrSiO_4$. When $Al_2O_3$ was added, the mechanical properties of $ZrSiO_4$ decreased due to the formation of pores and abnormal grains in the microstructure of the sintered zircon.

Properties of multi-walled carbon nanotube reinforced epoxy composites fabricated by using sonication and shear mixing

  • Koo, Min Ye;Shin, Hon Chung;Kim, Won-Seok;Lee, Gyo Woo
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.255-261
    • /
    • 2014
  • Multi-walled carbon nanotube reinforced epoxy composites were fabricated using shear mixing and sonication. The mechanical, viscoelastic, thermal, and electrical properties of the fabricated specimens were measured and evaluated. From the images and the results of the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content showed better dispersion and higher strength than those of the other specimens. The Young's moduli of the specimens increased as the nanotube filler content was increased in the matrix. As the concentrations of nanotubes filler were increased in the composite specimens, their storage and loss moduli also tended to increase. The specimen having a nanotube filler content of 0.6 wt% showed higher thermal conductivity than that of the other specimens. On the other hand, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value than that of the other specimens. The electrical conductivities also increased with increasing content of nanotube filler. Based on the measured and evaluated properties of the composites, it is believed that the simple and efficient fabrication process used in this study was sufficient to obtain improved properties in the specimens.

Thermal properties and mechanical properties of dielectric materials for thermal imprint lithography

  • Kwak, Jeon-Bok;Cho, Jae-Choon;Ra, Seung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.242-242
    • /
    • 2006
  • Increasingly complex tasks are performed by computers or cellular phone, requiring more and more memory capacity as well as faster and faster processing speeds. This leads to a constant need to develop more highly integrated circuit systems. Therefore, there have been numerous studies by many engineers investigating circuit patterning. In particular, PCB including module/package substrates such as FCB (Flip Chip Board) has been developed toward being low profile, low power and multi-functionalized due to the demands on miniaturization, increasing functional density of the boards and higher performances of the electric devices. Imprint lithography have received significant attention due to an alternative technology for photolithography on such devices. The imprint technique. is one of promising candidates, especially due to the fact that the expected resolution limits are far beyond the requirements of the PCB industry in the near future. For applying imprint lithography to FCB, it is very important to control thermal properties and mechanical properties of dielectric materials. These properties are very dependent on epoxy resin, curing agent, accelerator, filler and curing degree(%) of dielectric materials. In this work, the epoxy composites filled with silica fillers and cured with various accelerators having various curing degree(%) were prepared. The characterization of the thermal and mechanical properties wasperformed by thermal mechanical analysis (TMA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), rheometer, an universal test machine (UTM).

  • PDF

Thermal and Mechanical Properties of Epoxy/Micro- and Nano- Mixed Silica Composites for Insulation Materials of Heavy Electric Equipment

  • Park, Jae-Jun;Yoon, Ki-Geun;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.98-101
    • /
    • 2011
  • A 10 nm nano-silica was introduced to a conventional 3 ${\mu}M$ micro-silica composite to develop an eco-friendly new electric insulation material for heavy electric equipment. Thermal and mechanical properties, such as glass transition temperature (Tg), dynamic mechanical analysis, tensile and flexural strength, were studied. The mechanical results were estimated by comparing scale and shape parameters in Weibull statistical analysis. The thermal and mechanical properties of conventional epoxy/micro-silica composite were improved by the addition of nano-silica. This was due to the increment of the compaction via the even dispersion of the nano-silica among the micro-silica particles.

Characterization of PETG Thermoplastic Composites Enhanced TiO2, Carbon Black, and POE (TiO2, Carbonblack 및 POE로 보강된 열가소성 PETG 복합재료의 특성)

  • Yu, Seong-Hun;Lee, Jong-hyuk;Sim, Jee-hyun
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.354-362
    • /
    • 2019
  • In order to apply thermoplastic composites using PETG resin to various industrial fields such as bicycle frames and industrial parts, it is necessary to verify the impact resistance, durability and mechanical properties of the manufactured composite materials. To improve the mechanical properties, durability and impact resistance of PETG resin, an amorphous resin, in this study, compound and injection molding process were carried out using various additives such as TiO2, carbon black, polyolefin elastomer, and PETG amorphous resin. The thermal and mechanical properties of the thermoplastic composites, and the Charpy impact strength. The analysis was performed to evaluate the characteristics according to the types of additives. DSC and DMA analyzes were performed for thermal properties, and tensile strength, flexural strength, and tensile strength change rate were measured using a universal testing machine to evaluate mechanical properties. Charpy impact strength test was conducted to analyze the impact characteristics, and the fracture section was analyzed after the impact strength test. In the case of POE material-added thermoplastic composites, thermal and mechanical properties tend to decrease, but workability and impact resistance tend to be superior to those of PETG materials.