• Title/Summary/Keyword: mechanical and physical tests

Search Result 307, Processing Time 0.032 seconds

Physical and Mechanical Properties of Waterwaste Sludge and Stabilized Sludge (슬러지 및 안정화시킨 하수 슬러지의 물리적.역학적 특성)

  • 송창섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.6
    • /
    • pp.97-104
    • /
    • 1999
  • An experimental investigation was carried out to study the feasibility of using the stabiliozed sludge, as a backfill and cutoff-water materials for embankment structures. For stabilizing of sludge, hydrated lime and quick lime were used as additive, and a series of tests were performed on the sludge and the stabilized sludge to examine their physical and mechanical properties , compaction, compressive strength, hydraulic conuctivity and consolidation characteristics. From the test results, physical and mechanical properties of the stabilized sludge were improved as compared with the sludge. Especially from the viewpoint of physcial property, consolidation or settlement and cutoff-water, quick lime is more effective than the hydrated lime as a stabilization addtive. But, viewpoint of compaction and shear strength, hydrated lime is more effective than the quick lime as a atabilization additive. As a result of this study, it was found that the stabilized sludge can be developed the backfill and cutoff-water materials, improved the stabilizing method of sludge.

  • PDF

Experimental Lnvestigation on Mechanical Characteristics and Environmental Effects on Rubber Concrete

  • Khorrami, Morteza;Vafai, Abolhassan;Khalilitabas, Ahmad A.;Desai, Chandrakant S.;Ardakani, M. H. Majedi
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.17-23
    • /
    • 2010
  • The feasibility of the use of scrap tire rubber in concrete was investigated. The tests conducted in two groups: replacing of coarse aggregates with crumb rubber and cement particles with rubber powder. To distinguish the properties of new concrete, the following mechanical and durability tests were designed: compressive, tensile and flexural strength, permeability and water absorption. Rubber addition could affect the concrete properties depend on the type and percentage of the rubber added. Although the rubber addition modifies the mechanical characteristics of concrete in a way, but higher rubber content could not be useful. Concrete durability showed more dependency to the type of rubber instead of percentage of rubber. Moreover, to optimize the mechanical and durability of rubberized concrete, the useful percentage of rubber has been recommended.

Effect of a Five-week Scapular Correction Exercise in Patients with Chronic Mechanical Neck Pain

  • Lee, Kang-Seong
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.2
    • /
    • pp.126-131
    • /
    • 2020
  • Purpose: The purpose of this study was to compare the change in pain, Neck Disability Index score, and the craniovertebral angle by performing scapular correction exercise or general neck exercise for five weeks in participants with mechanical neck pain. Methods: A total of 31 participants were randomly assigned between the scapular correction exercise and the general neck exercise groups, and all participants performed intervention for 40 minutes each, three times a week for five weeks The effects were evaluated by measuring the Visual Analog Scale score, the Neck Disability Index score, and the craniovertebral angle, before and after the intervention. Independent t-tests were used to compare differences between two groups, and to compare differences between pre- and post-intervention, paired t-tests were used. Results: As measured before and after the intervention, the scapular correction exercise group showed significant improvement in all variables (p<0.05), while the general neck exercise group improved only in the neck disability index score. The differences between the two groups revealed further improvement in the scapular correction exercise group compared to the general neck exercise group (p<0.05). Conclusion: We found that five weeks of the scapular correction exercise to modify the position and movements of the scapula is clinically an important treatment tool for recovery from chronic mechanical neck pain symptoms and restoration of proper neck function.

Physical and Mechanical Properties of Glued Laminated Lumber of Pine (Pinus merkusii) and Jabon (Anthocephalus cadamba)

  • Lestari, Andi Sri Rahayu Diza;Hadi, Yusuf Sudo;Hermawan, Dede;Santoso, Adi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.143-148
    • /
    • 2018
  • The aim of this research was to determine the physical and mechanical properties of glued laminated lumber (glulam) made from jabon (Anthocephalus cadamba) and pine (Pinus merkusii). Three layers of lamina from each wood species were bonded using isocyanate adhesive with a glue spread of $280g{\cdot}m^{-2}$ and then pressed using cold press with a specific pressure of 1.47 MPa. Samples had dimensions of $3cm{\times}6cm{\times}100cm$ (thickness, width, and length, respectively). Glulam properties were tested based on Japanese Agricultural Standard (JAS) 234-2003. The results showed that the density of glulam was $0.36g{\cdot}m^{-3}$ for jabon and $0.73g{\cdot}m^{-3}$ for pine. The moisture content of all glulams fulfilled the JAS standard. The mechanical properties of pine glulam fulfilled the JAS standard in all tests, whereas jabon glulam fulfilled the standard in the modulus of rupture and shear tests.

Analysis on Physical and Mechanical Properties of Fault Materials using Laboratory Tests (실내시험을 통한 단층물질의 물리·역학적 특성 분석)

  • Moon, Seong-Woo;Yun, Hyun-Seok;Seo, Yong-Seok;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.91-101
    • /
    • 2017
  • Fault materials has various properties depending on their areas, rock types, and components because they are formed by heterogeneous and complicated mechanisms. In this study, to understand the physical and mechanical properties of fault materials, 109 fault materials distributed in South Korea were collected to conduct various laboratory tests with them and analyze their physical and mechanical properties (unit weight, specific gravity, porosity, gravel content, silt/clay content, clay mineral content, friction angle, and cohesion) according to areas, rock types, and components. As for the physical and mechanical properties by rock type, gneiss shows the highest medians in the unit weight ($17.1kN/m^3$) and specific gravity (2.73), granite does so in the porosity (45.5%), schist does so in the gravel content (20.0 wt.%) and cohesion (38.1 kPa), and phyllite does so in the silt/clay content (54.4 wt.%), clay mineral content (30.1 wt.%), and friction angle ($38.2^{\circ}$). With regard to the physical and mechanical properties by component, fault gouge was shown to have lower values than cataclasite and damage zones in all factors other than porosity and silt/clay contents.

Effects of Crushed RAP on Free and Restrained Shrinkage of Mortars

  • Topcu, Ilker Bekir;Isikdag, Burak
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.2
    • /
    • pp.91-95
    • /
    • 2009
  • Reclaimed asphalt pavement (RAP) is abundant substitute for natural aggregate in many areas. It is obtained by crushing of old road pavements in milling machine during rehabilitation and reconstruction process. In this study, reclaimed asphalt pavement mortars (RAPM) have been produced with different cement dosages and replacement ratios. The destructive and nondestructive tests have been conducted on specimens to determine physical and mechanical properties of RAPM. The free and restrained shrinkage tests on RAPM have been conducted to predict fractural behavior of mortars. The aim of the shrinkage tests was to delay crack formation and improve strain capacity of mortars before cracking. The results showed that RAPM exhibits lower elasticity modulus; however the tensile capacity was improved for deformation before cracking.

Physical and mechanical properties of volcanic glass in the Samho area, South Korea (삼호지역에 분포하는 유리질화산암에 대한 물리적$\cdot$역학적 특성)

  • Kang Seong-Seung;Lee Heon-Jong;Kang Choo-Won;Kim Cheong-Bin
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.223-227
    • /
    • 2005
  • The physical and mechanical properties of volcanic glass, which is distributed in the Samho area, South Korea were studied. Laboratory rock tests were carried out in order to obtain the various properties of rocks. Specific gravity, water content, absorption, porosity and wave velocity were measured for the physical properties. Uniaxial and triaxial compressive tests, Brazilian test and point load test were also performed for the mechanical properties. The tests of volcanic glass revealed that the apparent specific gravity, water content and absorption were 2.28, $1.67\%$ and $1.72\%$, respectively. Porosity $(3.87\%)$ was lower, whereas P-wave velocity (5330m/s) and S-wave velocity (2980 m/s) were relatively higher. Brazilian tensile strength ot 7.2MPa, and point load strength of 2.6MPa were among the mechanical properties of the rock. Uniaxial compressive strength (62.4MPa) estimated ken point load strength was very closed to the value (66.0MPa) from the uniaxial compressive test. Young's modulus and Poisson's ratio were E=43.2 GPa and v=0.28, respectively. Drawing the tangent line to Mohr-Coulomb failure criterion showed the cohesion of 20.1MPa and internal fraction angle of $28.6^{\circ}$.

Physical and Mechanical Characteristics of Subgrade Soil using Nondestructive and Penetration Tests (비파괴시험과 관입시험에 의한 노상토의 물리·역학적 특성)

  • Kim, Kyu-Sun;Kim, Dong-Hee;Fratta, Dante;Lee, Woojin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.19-27
    • /
    • 2011
  • This paper evaluates the applicability of wave-based nondestructive methodologies and a penetration test for compaction quality measurements during road construction. To evaluate the physical and mechanical properties of compacted subgrade soil layers, soil stiffness gauge (SSG), time domain reflectometry (TDR), and miniature electro-mechanical systems (MEMS) accelerometers were used to nondestructively evaluate the soil response during and after compaction and dynamic cone penetrometer (DCP) profiles were used to evaluate the soil shear strength after compaction was completed. At the field site, two types of soils were compacted with four different compaction equipments and energies. Field testing results indicate that soil parameters evaluated by different testing methods, which are SSG, TDR, MEMS accelerometer, and DCP, are highly correlated. In addition, it is shown that the physical and mechanical tests deployed in this study can be used as alternative methods to the conventional compaction quality evaluation methods when assessing the overall quality and the engineering response of compacted lifts.

Change of pore structure and uniaxial compressive strength of sandstone under electrochemical coupling

  • Chai, Zhaoyun;Bai, Jinbo;Sun, Yaohui
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.157-164
    • /
    • 2019
  • The effect of electrochemical modification of the physical and mechanical properties of sandstone from Paleozoic coal measure strata was investigated by means of liquid nitrogen physical adsorption, X-ray diffraction and uniaxial compressive strength (UCS) tests using purified water, 1 mol/L NaCl, 1 mol/L $CaCl_2$ and 1 mol/L $AlCl_3$ aqueous solution as electrolytes. Electrochemical corrosion of electrodes and wire leads occurred mainly in the anodic zone. After electrochemical modification, pore morphology showed little change in distribution, decrease in total pore specific surface area and volume, and increased average pore diameter. The total pore specific surface area in the anodic zone was greater than in the cathodic zone, but total pore volume was less. Mineralogical composition was unchanged by the modification. Changes in UCS were caused by a number of factors, including corrosion, weakening by aqueous solutions, and electrochemical cementation, and electrochemical cementation stronger than corrosion and weakening by aqueous solutions.

Mechanical Properties of the Stabilized Sludge (안정화시킨 슬러지의 역학적 특성)

  • 송창섭;권현일
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.599-605
    • /
    • 1999
  • An experimental investigation was carried out to study the feasibility of using the stabilized sludge, as a backfill and cutoff-water materials for embanckment structures. for stabilizing of sludge, hydrated lime and quick lime was used as additive , and a series of tests was performed on the sludge and the stabilized sludge to examine their physical properties, compaction, compressive strength, hydraulic conducivity and consolication characteristics. From the test results, the physical and mechanical properteis of the stabilized sludge weremore improved as compared with the sludge. Especially from the viewpoint of physical porperty , consolidation or settlement and cutoff-water , quick lime is more effective than the hydraged lime as tabilizatio addtivie. But , viewpoint of compaction and shear strength, hydrated lime is more effective than the quick lime as stabilization additive. As a result of this study, it was founded that the stabilized sludge can be developed the backfill and cutoff-water materials , improved the stabilizing method of sludge.

  • PDF