• Title/Summary/Keyword: mechanical and physical properties

Search Result 1,922, Processing Time 0.034 seconds

Development of Surface Pavement Materials for Environment-Friendly Farm Road (환경친화형 경작로를 위한 표층포장재료의 개발)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Korean Journal of Agricultural Science
    • /
    • v.31 no.2
    • /
    • pp.105-114
    • /
    • 2004
  • This study was performed to examine the physical and mechanical properties of eco-concrete using soil, natural coarse aggregate, soil compound and polypropylen fiber. The mass loss ratio was decreased with increasing the content of coarse aggregate and soil compound. The compressive strength, flexural strength, ultrasonic pulse velocity and dynamic modulus of elasticity were increased with increasing the content of coarse aggregate, soil compound and polypropylene fiber. The compressive and flexural strengths were showed in 8.07 MPa and 2.641 MPa at the curing age 28 days, respectively. The coefficient of permeability was decreased with increasing the content of coarse aggregate and soil compound, but it was increased with increasing the content of polypropylene fiber. The lowest coefficent of permeability was showed in $5.066{\times}10^{-9}cm/s$.

  • PDF

Weathering Properties and Slope Stability Evaluations of Bedrock under the Chokseongnu Pavilion, Jinjuseong Fortress, Korea (진주성 촉석루 성곽지반의 풍화특성과 사면안정성 평가)

  • Jo, Young-Hoon;Lee, Myeong-Seong;Lee, Sun-Myung;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.20
    • /
    • pp.89-103
    • /
    • 2007
  • The bedrock beneath the Chokseongnu pavilion consists of sandstone with alternate dark-gray to light-brown siltstone and dark-gray shale of the Jinju Formation, where bedding is well developed toward the Chokseongmun gate. Large to small joints and overbreak from the erosion weathering have been developed in the bedrock. Besides, water leakage from development of discontinuity planes, fragmentation of shale, crack and joint by tree roots are observed on the bedrock. While shale and siltstone showed high sensitivity in physical and chemical weathering, respectively, sandstone indicated the highest weathering sensitivity in both. As the results of structural stability analysis, the whole bedrock has high instability in wedge failures, and especially section No. II slope is more instable than section No. I. Therefore, it is necessary for the bedrock to be strengthened by improvement method for soft foundations and the surface reinforcement. The trees causing mechanical collapse of the bedrock should be also removed and a water flow prevention measure or a water exhaust are required.

  • PDF

Dose Verification of Intensity Modulated Radiation Therapy with Beam Intensity Scanner System

  • Vahc, Young-Woo;Park, Kwangyl;Ohyun Kwon;Park, Kyung-Ran;Lee, Yong-Ha;Yi, Byung-Yong;Kim, Sookil
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.248-251
    • /
    • 2002
  • The intensity modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation treatment of patients. Patient dose verification is clinically one of the most important parts in the treatment delivery of the radiation therapy. The three dimensional (3D) reconstruction of dose distribution delivered to the target helps to verify patient dose and to determine the physical characteristics of beams used in IMRT. A new method is presented for the pretreatment dosimetric verification of two dimensional distributions of photon intensity by means of Beam Intensity Scanner System (BISS) as a radiation detector with a custom-made software for dose calculation of fluorescence signals from scintillator. The scintillator is used to produce fluorescence from the irradiation of 6MV photons on a Varian Clinac 21EX. The BISS reproduces 3D- relative dose distribution from the digitized fluoroscopic signals obtained by digital video camera-based scintillator(DVCS) device in the IMRT. For the intensity modulated beams (IMBs), the calculations of absorbed dose are performed in absolute beam fluence profiles which are used for calculation of the patient dose distribution. The 3D-dose profiles of the IMBs with the BISS were demonstrated by relative measurements of photon beams and shown good agreement with radiographic film. The mechanical and dosimetric properties of the collimating of dynamic and/or step MLC system alter the generated intensity. This is mostly due to leaf transmission, leaf penumbra and geometry of leaves. The variations of output according to the multileaf opening during the irradiation need to be accounted for as well. These phenomena result in a fluence distribution that can be substantially different from the initial and calculative intensity modulation and therefore, should be taken into account by the treatment planning for accurate dose calculations delivered to the target volume in IMRT.

  • PDF

Preparation of Borosilicate Foamed Glass Body with Sound Absorption Characteristics by the Recycling Waste Liquid Crystal Display Glass (폐 LCD 유리를 이용한 흡음특성을 갖는 붕규산유리발포체 제조)

  • Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.612-619
    • /
    • 2016
  • In this research, an alumino-borosilicate foamed glass with sound absorption property was prepared using the waste borosilicate glass obtained from the recycling process of waste liquid crystal display (LCD) panel. A 100 g of pulverized waste borosilicate glass with the particle size of under 325 mesh, was mixed with 0.3 g (wt/wt) of graphite, each 1.5 g (wt/wt) of $Na_2CO_3$, $Na_2SO_4$ and $CaCO_3$ as a foaming agent, and 6.0 g (wt/wt) of $H_3BO_3$ and 3.0 g (wt/wt) of $Al_2O_3$ as a pore control agent. Following mixture was under the foaming process for 20 minutes at a foaming temperature of $950^{\circ}C$. The result yielded the foaming agent with 45% of the opened porosity and 0.5-0.7 of the sound absorbing coefficient. This alumino-borosilicate foamed glass with the sound absorption property showed excellent physical and mechanical properties such as density of $0.21g/cm^3$, bending strength of $55N/cm^2$ and compression strength of $298N/cm^2$ which can be ideally used as sound absorption materials with heat-resisting and chemical-resisting property.

A study on the asperity degradation of rock joint surfaces using rock-like material specimens (유사 암석 시편을 사용한 암석 절리면 돌출부 손상 연구)

  • Hong, Eun-Soo;Kwon, Tae-Hyuk;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.303-314
    • /
    • 2009
  • Image analyses for sheared joint specimens are performed to study asperity degradation characteristics with respect to the roughness mobilization of rock joints. Four different types of joint specimens, which are made of high-strength gypsum materials, are prepared by replicating the three-dimensional roughness of rock joints. About twenty jointed rock shear tests are performed at various normal stress levels. The characteristic and scale of asperity degradation on the sheared joint specimens are analyzed using the digital image analysis technique. The results show that the asperity degradation characteristic mainly depends on the normal stress level and can be defined by asperity failure and wear. The asperity degradation develops significantly around the peak shear displacement and the average amount of degraded asperities remains constant with further displacement because of new degradation of small scale asperities. The shear strength results using high-strength gypsum materials can not fully represent physical properties of each mineral particles of asperities on the natural rock joint surface. However the results of this quantitative estimation for the relationship between the peak shear displacement and the asperity degradation suggest that the characterization of asperity degradation provides an important insight into mechanical characteristics and shear models of rock joints.

Comparison of the Dehumidification Performance Between LiCl and LiBr in a Liquid Desiccant Dehumidifying Element Having Criss-Cross Sinusoidal Channels (Celdek) (교차 적층된 파형 액체 제습 소자 (Celdek)에서 LiCl과 LiBr 수용액의 제습 성능 비교)

  • Kim, Nea-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.27-34
    • /
    • 2018
  • Recently, liquid desiccant systems have received attention for the dehumidification of air. LiCl and LiBr are widely used in liquid desiccant systems due to their excellent thermo-physical properties. In this study, dehumidification tests were conducted with Celdek elements using LiCl and LiBr. During the tests, the dry and wet-bulb air temperatures were maintained at $35^{\circ}C$ and $28^{\circ}C$, respectively. The solution temperature was $20^{\circ}C$, the solution concentration was 50%, the solution circulation rate was 50 kg/h, and the frontal air velocity was varied from 2.0 to 4.0 m/s. The results show that the amount of dehumidification increased as the frontal velocity increased. On average, LiCl showed 27% higher dehumidification performance than LiBr, which was probably due to the lower saturation of the absolute humidity of LiCl compared with that of LiBr. On the other hand, LiBr yielded 12% larger pressure drop than LiCl. In general, the Sherwood numbers of LiCl and LiBr were approximately the same, showing that the effect of the desiccant on the Sherwood number was insignificant. Existing correlations highly overpredicted the present Sherwood numbers.

Study on Application of Ultrasonic Propagation Imager for Non-destructive Evaluation of Composite Lattice Structure (복합재 격자 구조 비파괴평가를 위한 초음파전파 영상화 시스템 활용 연구)

  • Park, Jae-Yoon;Shin, Hye-Jin;Lee, Jung-Ryul
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.356-364
    • /
    • 2017
  • Composite lattice structures are tried to be used in various fields because of its benefit in physical properties. With increase of demand of the composite lattice structure, nondestructive testing technology is also required to certificate the quality of the manufactured structures. Recently, research on the development of the composite lattice structure in Republic of Korea was started and accordingly, fast and accurate non-destructive evaluation technology was needed to finalize the manufacturing process. This paper studied non-destructive testing methods for composite lattice structure using laser ultrasonic propagation imaging systems. Pulse-echo ultrasonic propagation imaging system was able to inspect a rib structure wrapped with a skin structure. To reduce the time of inspection, a band divider, which can get signal in different frequency bands at once, was developed. Its performance was proved in an aluminum sandwich panel. In addition, to increase a quality of results, curvature compensating algorithm was developed. On the other hand, guided wave ultrasonic propagation imaging system was applied to inspect delamination in a rib structure. To increase an area of inspection, multi-source ultrasonic wave propagation image was applied, and defects were successfully highlighted with variable time window amplitude mapping algorithm. These imply that ultrasonic propagation imaging systems provides fast and accurate non-destructive testing results for composite lattice structure in a stage of the manufacturing process.

Controlling the Morphology of Polyvinylidene-co-hexafluoropropylene (PVDF-co-HFP) Membranes Via Phase Inversion Method (상전이법을 이용한 P(VDF-co-HFP) 분리막 구조제어)

  • Song, Ye Jin;Kim, Jong Hoo;Kim, Ye Som;Kim, Sang Deuk;Cho, Young Hoon;Park, Ho Sik;Nam, Seung Eun;Park, You In;Son, Eun Ho;Kim, Jeong F.
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.187-195
    • /
    • 2018
  • In this work, the morphology of polyvinylidene-co-hexafluoropropylene (PVDF-co-HFP) membranes were systemically investigated using phase inversion technique, to target membrane contactor applications. As the presence of macrovoids degrade the mechanical integrity of the membranes and jeopardize the long-term stability of membrane contactor processes (e.g. wetting), a wide range of dope compositions and casting conditions was studied to eliminate the undesired macrovoids. The type of solvent had significant effect on the membrane morphology, and the observed morphology were correlated to the physical properties of the solvent and solvent-polymer interactions. In addition, to fabricate macrovoid-free structure, the effects of different coagulation temperatures, inclusion of additives, and addition of nonsolvents were investigated. Due to the slow crystallization rate of P(VDF-co-HFP) polymer, it was found that obtaining porous membrane without macrovoids is difficult using only nonsolvent-induced phase separation method (NIPS). However, combined other phase inversion methods such as evaporation-induced phase separation (EIPS) and vapor-induced phase separation (VIPS), the desired membrane morphology can be obtained without any macrovoids.

An Experimental Study on the Drying Shrinkage of Concrete Using High-Quality Recycled Sand (고품질 순환잔골재를 사용한 콘크리트의 건조수축 특성에 관한 실험적 연구)

  • Song, Ha-Young;Lee, Sang-Soo;Lee, Do-Heun;Lee, Jong-Gou;Kim, Jae-Hwan;Lim, Hyon-Ung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.136-143
    • /
    • 2006
  • In this study, recently it is urgently required that demolition waste concrete has to be recycled on the construction because urban development is accelerated and redevelopment project is rapidly expanded, production quantity of construction and demolition waste concrete is being increased. As a results of drying shrinkage test under restrained and unrestrained condition, although workability and mechanical properites of concrete using HQRS were similar to that of concrete using natural sand, there were a great difference in deformation characteristic of dry shrinkage according to replacement ratio of HQRS. And, it makes sure that use of HQRS instead of partial nature sand was effective because drying shrinkage of concrete using 30 volume percentage of HQRS was smaller than that using only natural sand. Therefore, it is the objective of this study to provide the fundamental data about the re-application as an analysis of the drying shrinkage characteristics of concrete using HQRS and it is able to creta a high value-added by using HQRS.

  • PDF

A Case Study of Applying Mixture Experimental Design to Enhance Flame Retardancy of Wood-Plastic Composites (합성목재의 난연성 확보를 위한 혼합물 실험계획 사례)

  • Seo, Ho-Jin;Kwon, Minseo;Lee, Gun-Myung;Ju, Hyejin;Byun, Jai-Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.1
    • /
    • pp.169-181
    • /
    • 2022
  • Purpose: This paper addresses a case study of developing a flame retardant wood-plastic composites (WPC) by adding tannic acid to the existing synthetic wood. The optimal mixing ratios of six components are explored to minimize the burning time using two mixture designs. Methods: In the preliminary experiment, six components are considered to find important components and their ranges. Seven D-optimal mixture design points are generated. Two points are removed for the balance of plastic components to be maintained, and the remaining five points are augmented with two basic compositions. Four components are selected to be considered in the main experiment. In the main experiment, pellets are extruded at the eight mixture design points. In-house testing of burning time is executed three times. Specimens made of pellets from two promising flame retardant compositions are sent to the accredited laboratories and tested. Results: The test results are as follows: 1) The best composition (Wood flour, Tannic acid, PE, Lubricant) = (25, 41, 10, 2) (wt%) shows the burning time of 1 second, which is 9-fold improvement compared to the the burning time of 9 seconds from the existing composition (58, 0, 10, 2) (wt%). 2) The second best composition (41, 25, 10, 2) (wt%) results in the burning time of 2 seconds. This composition is inferior to the best composition in terms of the flame retardancy, but more economical since it needs less tannic acid which is 100-fold expensive than the wood flour. Conclusion: Flame retardant compositions are found by adding tannic acid to the existing WPC employing optimal mixture designs. This case study will be helpful to practitioners who try to develop new products with additional physical properties with as small number of experimental trials as possible. Future research direction includes exploring conditions which satisfy both performance level and cost limitation simultaneously.