• Title/Summary/Keyword: mechanical agitation

Search Result 82, Processing Time 0.022 seconds

Film Boiling Heat Transfer Characteristics in Liquid-Liquid System (액체,액체계의 막비등열전달 특성)

  • 김병주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.87-94
    • /
    • 1992
  • Film boiling heat transfer characteristics in liquid-liquid systems are studied experimentally. Liquid gallium as a heating liquid, n-pentane, freon-113, and ethanol are used as boiling liquids. In gallium-n-pentane and gallium-freon-113 systems the minimum film boiling point occurred at higher temperature than those observed in copper-boiling liquid systems. However MFB point occurred almost at the same temperature for the case of ethanol. This difference are due to the effects of contact angle and interfacial agitations in gallium-boiling liquid systems. Film boiling heat transfer rate, for the gallium-boiling liquid systems considered in this work, found to be approximately 10% higher than those in copper-boiling liquid systems, whose main cause is believed to be gallium-boiling liquid interfacial agitations affected by the density ratio between gallium and boiling liquid.

Characterization of Odorant Compounds from Mechanical Aerated Pile Composting and Static Aerated Pile Composting

  • Kumari, Priyanka;Lee, Joonhee;Choi, Hong-Lim
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.594-598
    • /
    • 2016
  • We studied airborne contaminants (airborne particulates and odorous compounds) emitted from compost facilities in South Korea. There are primarily two different types of composting systems operating in Korean farms, namely mechanical aerated pile composting (MAPC) and aerated static pile composting (SAPC). In this study, we analyzed various particulate matters (PM10, PM7, PM2.5, PM1, and total suspended particles), volatile organic compounds and ammonia, and correlated these airborne contaminants with microclimatic parameters, i.e., temperature and relative humidity. Most of the analyzed airborne particulates (PM7, PM2.5, and PM1) were detected in high concentration at SAPC facilities compered to MAPC; however these differences were statistically non-significant. Similarly, most of the odorants did not vary significantly between MAPC and SAPC facilities, except for dimethyl sulfide (DMS) and skatole. DMS concentrations were significantly higher in MAPC facilities, whereas skatole concentrations were significantly higher in SAPC facilities. The microclimate variables also did not vary significantly between MAPC and SAPC facilities, and did not correlate significantly with most of the airborne particles and odorous compounds, suggesting that microclimate variables did not influence their emission from compost facilities. These findings provide insight into the airborne contaminants that are emitted from compost facilities and the two different types of composting agitation systems.

Washing of Pigment Dyed Fabrics (시판 피그먼트 염색직물의 워싱가공에 관한 연구)

  • Lee, Hye-Ja;Yoo, Hye-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.8
    • /
    • pp.1169-1177
    • /
    • 2006
  • The aim of this study was to investigate the change of the weight loss, tensile strength, flex stiffness, and color-values of the pigment-dyed cotton, polyester/cotton, polyester and nylon fabrics after washing process. Pigment-dyed cotton and polyester/cotton fabrics were treated with the cellulase, of which concentrations were 0, 1, 3 and 5g/l. The time of washing process ranges from 30 to 120 minutes. Pigment-dyed polyester and nylon fabrics were treated without enzyme, of which the washing temperature were 13, 30, $55^{\circ}C$ and the washing time ranges from 30 to 120 minutes. Also, they were tested in terms of the influences of agitation speed(rpm) and additives such as softeners, enzymes, detergents. The weight loss and tensile strength of the pigment-dyed cotton and polyester/cotton fabrics were positively correlated with the concentration of cellulase and washing time. Neither polyester nor nylon fabrics exhibited any change of the weight. All fabrics showed the decline of flex stiffness and decoloration after washing process. Decoloration of cotton and polyester/cotton fabrics was due to both the influence of cellulase and the mechanical rubbing. On the other hand, that of polyester and nylon fabrics was caused by the mechanical rubbing only.

A Study on Micro-Hole Drilling by EDM (미세구멍의 방전가공에 관한 연구)

  • 윤재웅;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1147-1154
    • /
    • 1990
  • Micro-hole drilling by EDM and production of fine rods for the tool electrode or other purpose have become very important in industry. This paper suggests a new method for production of very fine rods by ultrasonic-assisted chemical machining and describes the machining characteristics of micro-hole drilling by EDM. For fine rods, copper wires of initial diameter of 250.mum are used and successfully machined into a diameter of less than 30.mum with good repeatability. The ultrasonic agitation not only accelerated the material removal rate uniformly, but also produced smooth surfaces of fine rods. To drill the micro-hole, kerosene and pure water is used as a dielectric. From the experiment, water is superior to kerosene with respect to surface roughness of inlet and outlet of hole and machined surface as well as electrode wear. However, due to the electrochemical reaction of water, small pits are remained on the workpiece surface.

Effect of Process Parameters on Microhardness of Ni-Al2O3 Composite Coatings (Ni-Al2O3 복합코팅의 마이크로 경도에 대한 공정변수의 영향)

  • Jin, Yeung-Jun;Park, Simon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1037-1045
    • /
    • 2022
  • In this study, nanoscale Al2O3 ceramic particles were used due its exceptionally high hardness characteristics, chemical stability, and wear resistance properties. These nanoparticles will be used to investigate the optimal process conditions for the electro co-deposition of the Ni-Al2O3 composite coatings. A Watts bath electrolytic solution of a controlled composition along with a fixed agitation speed was used for this study. Whereas the current density, the pH value, temperature and concentration of the nano Al2O3 particles of the electrolyte were designated as the manipulative variables. The experimental design method was based on the orthogonal array to find the optimum processing parameters for the electro co-deposition of Ni-Al2O3 composite coatings. The result of confirmation experimental based on the optimal processing condition through the analysis of variance ; EDX analysis found that the ratio of alumina increased to 8.65 wt.% and subsequently the overall hardness increased to 983 Hv. Specially, alumina were evenly distributed on Nickel matrix and particles were embedded more firmly and finely in Nickel matrix.

Suggestion of the Analysis Model and Verification on Rotating Flow in Stirred Tanks Using CFD (전산유체역학을 이용한 교반 탱크 내에서의 회전유동에 대한 해석 모델의 제안 및 검증)

  • Hwang, Seung Sik;Yong, Cho Hwan;Choi, Gyuhong;Shin, Dohghoon;Chung, Tae Yong
    • Journal of Energy Engineering
    • /
    • v.22 no.1
    • /
    • pp.28-37
    • /
    • 2013
  • Stirred tank is widely used in various industries for mixing operations and chemical reactions for single- or multi-phase fluid systems. For designing agitator of high performance, quantity data of internal flow characteristics influenced by mixing performance are definitely confirmed but quantity analysis about the transient flow characteristics of complicate structure is recognized as difficult problem in the present. In this study, two models of commercial CFD code Fluent 6.3 used to propose suitable for the tank analysis. Agitation of Stirred tank is analyzed using a mixed model and the flow in the stirred tank is analyzed using a standard k-${\varepsilon}$ model. Multiple reference frame(MRF) and Sliding mesh(SM), the analysis techniques were used For compare a result of CFD with a visualization experiment result, to grasp internal flow and mixing characteristic in stirred tank and to present fundamental analysis method.

Evaluation of Dispersivity and Resistance of the Adhesive Joint According to Dispersion Methods of CNT (CNT 분산 방법에 따른 접착조인트의 저항 및 분산성 평가)

  • Lee, Bong-Nam;Kim, Cheol-Hwan;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.348-355
    • /
    • 2015
  • NDT (Non Destructive Test) of the adhesive joints is very important because their strengths have greatly affected by the worker's skill and environmental condition. Recently, the electric impedance method in which 1-2 wt% CNT was dispersed in the adhesive and the electric resistance of the adhesive joint was measured was suggested for the defect detection of the adhesive joint. The uniform dispersion of CNT in the electric impedance method is very important to make a constant electric resistance of the adhesive joint and the accuracy of defect detection depends on the uniform dispersion. In this paper, the adhesive joints in which CNT was dispersed in the adhesive by the four dispersion methods were made and their electric resistance were measured. The pre-process and evaporation process of CNT using the ultrasonic method and agitation method was used and the effective dispersion method was suggested. Also, the criteria to evaluate the dispersivity was proposed.

A pplication of $CO_2$ Technolgy in Nuclear Decontamination (원자력 제염에서 $CO_2$ 기술 응용)

  • Park, K.H.;Kim, H.W.;Kim, H.D.;Koh, M.S.;Ryu, J.D.;Kim, Y.E.;Lee, B.S.;Park, H.T.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.1
    • /
    • pp.62-67
    • /
    • 2001
  • Green technology is being developed up to a point that is feasible not only in an environmental sense, but also in an economical viewpoint. This paper introduces two case studies that applied $CO_2$ technology into nuclear industry. 1) Nuclear laundry : A laundry machine that uses liquid and supercritical $CO_2$ as a solvent for decontamination of contaminated working dresses in nuclear power plants was developed. The machine consists of a 16 liter reactor, a recovery system with compressors, and storage tanks. All $CO_2$ used in cleaning is fully recovered and reused in next cleaning, resulting in no production of secondary nuclear waste. Decontamination factor is still lower than that in the methods currently used in the plant. Nuclear laundry using $CO_2$ looks promising with technical improvements-surfactants and mechanical agitation. 2) $CO_2$ nozzle decontamination : An adjustable nozzle for controlling the size of dry ice snow was developed. Using the developed nozzle, a surface decontamination device was made. Human oils like fingerprints on glass were easy to remove. Decontamination ability was tested using a contaminated pump-housing surface. About 40 to 80% of radioactivity was removed. This device is effective in surface-decontamination of any electrical devices like detector, controllers which cannot be cleaned in aqueous solution.

  • PDF

Effect of Orientation on Pool Boiling Heat Transfer in Annulus with Small Gap (경사각이 좁은 틈새를 가지는 환상공간 내부 풀비등 열전달에 미치는 영향)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.237-244
    • /
    • 2011
  • An experimental study was carried out to investigate the effect of the inclination angle on the nucleate pool boiling of saturated water at atmospheric pressure. We considered an annulus with a gap of 5 mm and a bottom opening. The inner tube of the annulus was heated, and the outer diameter and the length of the tube were 25.4 mm and 500 mm, respectively. The inclination angle was varied from horizontal to vertical. The results were compared to those for an annulus with a larger gap and a single tube. In the small-gap annulus, the effect of the inclination angle on the heat transfer was not significant. However, an early onset of the critical heat flux was observed at 80 kW/$m^2$ when the annulus was horizontal. Liquid agitation and bubble coalescence were considered to be the major heat-transfer mechanisms.

Effects of Outflow Area on Pool Boiling in Vertical Annulus (출구유로 단면적이 수직 환상공간 내부의 풀비등에 미치는 영향)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.377-385
    • /
    • 2013
  • To identify the effects of an outflow area on pool boiling heat transfer in a vertical annulus, three different flow restrictors were studied experimentally. For the test, a heated tube of smooth stainless steel and water at atmospheric pressure were used. Both annuli with open and closed bottoms were considered. To validate the effects of the outflow area on the heat transfer, the results of the annulus with the restrictor were compared with the data for the plain annulus without the restrictor. The reduction of the outflow area ultimately results in a decrease in the heat transfer. As the outflow area is very small, a slight increase in heat transfer is also observed. The major cause of this tendency is explained as the difference in the intensity of liquid agitation cause by the movement of coalesced bubbles. It is identified that the convective flow, pulsating flow, and evaporative mechanism are considered as the important mechanisms.