• Title/Summary/Keyword: mechanical activation

Search Result 547, Processing Time 0.027 seconds

Studies on Whole Cell Immobilized Glucose Isomerase - I. Preparation and Properties of Whole Cell Immobilized Glucose Isomerase - (포도당 이성화 효소의 세포 고정화에 관한 연구 - I. 세포 고정화 효소의 제조와 성질 -)

  • Ahn, Byung-Yoon;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.192-199
    • /
    • 1979
  • With cells of Streptomyces spp K-45 isolated from soil, the immobilization of glucose isomerase by a series of treatments ; heat, carefully manipulated drying, extrusion with a thickening agent, and glutaraldehyde-induced crosslinking, was presented. This was aimed to obtain a mechanically stable form of whole cell containing glucose isomerase. The resulted pellet form had a good mechanical strength, compared with a commercial product, and showed 26 % of the activity recovery. The specific activity was 48.1 units per g of the dry material. The immobilized glucose isomerase generally showed properties similar to those of the soluble enzyme ; optimal pH at $7.5{\sim}9.0$, optimal temperature at $80{\sim}85^{\circ}C$, activation energy of 10.9 kcal/mole, and $K_m$ for glucose of 10.9M. The immobilized enzyme was very thermostable and pH stable.

  • PDF

Electrophysiological Characteristics of Spinal Neurons Receiving Ventral Root Afferent Inputs in the Cat (척수전근내 구심흥분을 받는 척수신경세포의 생리학적 특성)

  • Kim, Jun;Lee, Suk-Ho;Chung, Soon-Tong
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.389-402
    • /
    • 1990
  • The physiological characteristics of the neurons receiving the ventral root afferent inputs were investigated in the cat. A total of 70 cells were identified in the lumbosacral spinal cord. All these cells responded only to the C-strength stimulation of the distal stump of cut ventral root and the estimated conduction velocities of the VRA fibers were not faster than 4 m/sec. The majority of them were silent in resting state. For 49 cells, their peripheral receptive fields were characterized. Among them, 25 cells were exclusively excited by VRA inputs, 8 were inhibited and the remaining cells recevied both excitatory and inhibitory VRA inputs. According to the response pattern to the mechanical stimuli applied to their receptive fields, only a fourth of them were typical high threshold cell, a sixth, wide dynamic range cells, while remainings were a rather complex cells. Most of the cells receiving VRA inputs, received only the A ${\delta}-peripheral$ nerve inputs. Intravenous injection of morphine decreased the response of spinal cells to the VRA activation. The responses were abolished completely by counter irritation to the common peroneal nerve with C-strength-low frequency stimuli. These physiological properties of the spinal neurons receiving the VRA inputs are differ in some aspect from the spinal neurons receiving nociceptive inputs from the periphery, but still were consistent with the contention that VRA system might carry nociceptive informations arising from the spinal cord and/or neraby surrounding tissues.

  • PDF

New composites based on low-density polyethylene and rice husk: Elemental and thermal characteristics

  • Anshar, Muhammad;Tahir, Dahlang;Makhrani, Makhrani;Ani, Farid Nasir;Kader, Ab Saman
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.250-257
    • /
    • 2018
  • We developed new composites by combining the solid waste from Low-Density Polyethylene in the form of plastic bag (PB) and biomass from rice husk (RH),in the form of $(RH)_x(PB)_{1-x}$ (x = (1, 0.9, 0.7, 0.5)), as alternative fuels for electrical energy sources, and for providing the best solution to reduce environmental pollution. Elemental compositions were obtained by using proximate analysis, ultimate analysis, and X-ray fluorescence spectroscopy, and the thermal characteristics were obtained from thermogravimetric analysis. The compositions of carbon and hydrogen from the ultimate analysis show significant increases of 20-30% with increasing PB in the composite. The activation energy for RH is 101.22 kJ/mol; for x = 0.9 and 0.7, this increases by 4 and 6 magnitude, respectively, and for x = 0.5, shows remarkable increase to 165.30 kJ/mol. The range of temperature of about $480-660^{\circ}C$ is required for combustion of the composites $(RH)_x(PB)_{1-x}$ (x = (1, 0.9, 0.7, 0.5)) to perform the complete combustion process and produce high energy. In addition, the calorific value was determined by using bomb calorimetry, and shows value for RH of 13.44 MJ/kg, which increases about 30-40% with increasing PB content, indicating that PB has a strong effect of increasing the energy realized to generate electricity.

Modeling of Arrhythmogenic Automaticity Induced by Stretch in Rat Atrial Myocytes

  • Youm, Jae-Boum;Leem, Chae-Hun;Zhang, Yin Hua;Kim, Na-Ri;Han, Jin;Earm, Yung-E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.5
    • /
    • pp.267-274
    • /
    • 2008
  • Since first discovered in chick skeletal muscles, stretch-activated channels (SACs) have been proposed as a probable mechano-transducer of the mechanical stimulus at the cellular level. Channel properties have been studied in both the single-channel and the whole-cell level. There is growing evidence to indicate that major stretch-induced changes in electrical activity are mediated by activation of these channels. We aimed to investigate the mechanism of stretch-induced automaticity by exploiting a recent mathematical model of rat atrial myocytes which had been established to reproduce cellular activities such as the action potential, $Ca^{2+}$ transients, and contractile force. The incorporation of SACs into the mathematical model, based on experimental results, successfully reproduced the repetitive firing of spontaneous action potentials by stretch. The induced automaticity was composed of two phases. The early phase was driven by increased background conductance of voltage-gated $Na^+$ channel, whereas the later phase was driven by the reverse-mode operation of $Na^+/Ca^{2+}$ exchange current secondary to the accumulation of $Na^+$ and $Ca^{2+}$ through SACs. These results of simulation successfully demonstrate how the SACs can induce automaticity in a single atrial myocyte which may act as a focus to initiate and maintain atrial fibrillation in concert with other arrhythmogenic changes in the heart.

Study on the degradation rate and pH change of PLGA membrane with a biodegradation (생분해에 따른 PLGA 멤브레인의 분해속도 및 pH 변화에 대한 연구)

  • Xie, Yuying;Park, Jong-Soon;Kang, Soon-Kook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6403-6410
    • /
    • 2015
  • Medical polymer PLGA is biocompatible, biodegradation, mechanical characteristic and biostability, and the degradation time can be adjust by controlling the number of monomer. In this paper, PLGA membranes have different composition ratio by L/D type was prepared by phase transition method. And the PLGA membrane in phosphate buffered saline(PBS) at the different test temperatures for different periods of time to examined for change in mass and measured the pH of degradation media. Measurement of Tg and surface structure was performed using a DSC and Stereoscopic microscope. As the molecular weighter increase, hydrolysis rate was decrease in geometrical progression. According to the composition ratio by L/D type, degradation rate and the change of pH are large.

Effects of Nano-Sized Inorganic Fillers on Polymerization and Thermal Degradation of Polyurethane Composites (나노사이즈 무기분말이 폴리우레탄복합체의 중합 및 열분해반응에 미치는 영향)

  • Lee, Joon-Man;Ahn, Won-Sool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.1027-1034
    • /
    • 2010
  • Effects of inorganic nano-powders on the polymerization and thermal degradation kinetics as well as the mechanical properties of polyurethane nano-composites were studied by both the measurement of polymerization temperature as a function of time and non-isothermal thermogravimetric analysis (TGA) as well as the Instron test. As the results from polymerization studies, the reaction rates of MMT-filled PU composites were faster than those of Ce500-filled ones, and moreover, the activation energies using Kissinger method for the thermal degradation of composites were calculated as 139.34 kJ/mol for the Ce500-filled PU composites and 91.12 kJ/mol for MMT-filled one, respectivel, exhibiting that MMT nano-powder seemed to be acting as the catalyst for both polymerization and degradation of PU composites. UTM result, however, showed that tensile strength at break of MMT-filled composites was much higher than that of Ce500-filled ones above the concentrations range of 5 phr in the composites.

Corrosion and Oxidation Behaviors of ion-nitrided tool Steels (이온질화된 공구강 표면의 산화 및 공식거동)

  • Choe Han-Cheol;Lee Ho-Jong;Jeong Yong-Woon
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.3
    • /
    • pp.126-135
    • /
    • 2005
  • SKD 11 steel has been widely used for tools, metallic mold and die for press working because of its favorable mechanical properties such as high toughness and creep strength as well as excellent oxidation resistance. The ion nitrided tool steel containing Mo results in improvement of corrosion resistance, strength at high temperature and pitting resistance, especially in $Cl^-$ contained environment. But the Mo addition causes a disadvantage such as lower oxidation resistance at elevated temperature. In this study, several effects of ion-disadvantage on the oxidation characteristics for SKD 11 steel with various oxidation temperature were investigated. SKD 11 steels were manufactured by using vacuum furnace and solutionized for 1 hr at $1,050^{\circ}C$. Steel surface was ion nitrided at $500^{\circ}C$ for 1 hr and 5 hr by ion nitriding equipment. ion nitrided specimen were investigated by SEM, OM and hardness tester. Oxidation was carried out by using muffle furnace in air at $500^{\circ}C,\;700^{\circ}C\;and\;900^{\circ}C$ for 1hr, respectively. Oxidation behavior of the ion nitrided specimen was investigated by SEM, EDX and surface roughness tester. The conclusions of this study are as follows: It was found that plasma nitriding for 5 hr at $500^{\circ}C$, compared with ion nitriding for 1 hr at $500^{\circ}C$, had a thick nitrided layer and produced a layer with good wear, corrosion resistance and hardness as nitriding time increased. Nitrided SKD 11 alloy for 1hr showed that wear resistance and hardness decreased, whereas surface roughness increased, compared with nitrided SKD 11 alloy for 5 hr. The oxidation surface at $900^{\circ}C$ showed a good corrosion resistance.

Improvement of Thermal Conductivity of Poly(dimethyl siloxane) Composites Filled with Boron Nitride and Carbon Nanotubes (보론 나이트라이드와 탄소나노튜브로 충전된 실리콘 고무의 열전도도 향상)

  • Ha, Jin-Uk;Hong, Jinho;Kim, Minjae;Choi, Jin Kyu;Park, Dong Wha;Shim, Sang Eun
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.722-729
    • /
    • 2013
  • In order to enhance the thermal conductivity of poly(dimethyl siloxane) (PDMS), boron nitride (BN) and carbon nanotubes (CNTs) were incorporated as the thermally conductive fillers. The amount of BN was increased from 0 to 100 phr (parts per hundred rubber) and the amount of CNTs was increased from 0 to 4 phr at a fixed amount of the boron nitride (100 phr). The thermal conductivity of the composites increased with an increasing concentration of BN, but the incorporation of CNTs had only a slight effect on the enhancement of thermal conductivity. Unexpectedly, the thermal degradation of the composites was accelerated by the addition of CNTs in 100 phr BN filled PDMS. Activation energy for thermal decomposition of the composites was calculated using the Horowitz-Metzger method. The curing behavior, electrical resistivity, and mechanical properties of PDMS filled with BN and CNTs were investigated.

Covalent Coupling of ${\beta}-Fructofuranosidase$ on Microbial Cells (미생물 세포에 공유결합으로 고정화시킨 ${\beta}-Fructofuranosidase$에 관한 연구)

  • Uhm, Tai-Boong;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.267-272
    • /
    • 1984
  • ${\beta}-Fructofuranosidase$ was immobilized covalently on the oxidized microbial wall of a Penicillium spp. 'PS-8', which is totally different from the conventional whole cell immobilization in concept. The immobilization of ${\beta}-fructofuranosidase$ by a series of treatments; oxidation of microbial cells with sodium metaperiodate, enzyme loading on the oxidized cells, extrusion, and crosslinking induced by glutaradehyde, were carried out. The final product had a good mechanical strength and showed 26% of the applied enzyme activity. The specific activity was 750 units per g of the dry cell product. The immobilized enzyme showed the kinetic parameters as follows; optimum pH at 5, optimum temperature at $55^{\circ}C$, activation energy of 19 kJ $mol^{-1}$, and apparent Km of 55 mM.

  • PDF

High-Temperature Corrosion Behavior of Alloy 617 in Helium Environment of Very High Temperature Gas Reactor (초고온가스로 헬륨 분위기에서 Alloy 617의 고온 부식 거동)

  • Lee, Gyeong-Geun;Jung, Sujin;Kim, Daejong;Jeong, Yong-Whan;Kim, Dong-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.659-667
    • /
    • 2012
  • Alloy 617 is a Ni-base superalloy and a candidate material for the intermediate heat exchanger (IHX) of a very high temperature gas reactor (VHTR) which is one of the next generation nuclear reactors under development. The high operating temperature of VHTR enables various applications such as mass production of hydrogen with high energy efficiency. Alloy 617 has good creep resistance and phase stability at high temperatures in an air environment. However, it was reported that the mechanical properties decreased at a high temperature in an impure helium environment. In this study, high-temperature corrosion tests were carried out at $850^{\circ}C-950^{\circ}C$ in a helium environment containing the impurity gases $H_2$, CO, and $CH_4$, in order to examine the corrosion behavior of Alloy 617. Until 250 h, Alloy 617 specimens showed a parabolic oxidation behavior at all temperatures. The activation energy for oxidation in helium environment was 154 kJ/mol. The SEM and EDS results elucidated a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbides. The thickness and depths of degraded layers also showed a parabolic relationship with time. A normal grain growth was observed in the Cr-rich surface oxide layer. When corrosion tests were conducted in a pure helium environment, the oxidation was suppressed drastically. It was elucidated that minor impurity gases in the helium would have detrimental effects on the high-temperature corrosion behavior of Alloy 617 for the VHTR application.