Browse > Article
http://dx.doi.org/10.5762/KAIS.2015.16.9.6403

Study on the degradation rate and pH change of PLGA membrane with a biodegradation  

Xie, Yuying (Dept of Environmental and Bio-Chemical Eng., Sunmoon University)
Park, Jong-Soon (GLO-ONE Co. Ltd.)
Kang, Soon-Kook (Dept of Environmental and Bio-Chemical Eng., Sunmoon University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.16, no.9, 2015 , pp. 6403-6410 More about this Journal
Abstract
Medical polymer PLGA is biocompatible, biodegradation, mechanical characteristic and biostability, and the degradation time can be adjust by controlling the number of monomer. In this paper, PLGA membranes have different composition ratio by L/D type was prepared by phase transition method. And the PLGA membrane in phosphate buffered saline(PBS) at the different test temperatures for different periods of time to examined for change in mass and measured the pH of degradation media. Measurement of Tg and surface structure was performed using a DSC and Stereoscopic microscope. As the molecular weighter increase, hydrolysis rate was decrease in geometrical progression. According to the composition ratio by L/D type, degradation rate and the change of pH are large.
Keywords
Activation energy; biodegradation; Glass transtion temperature; PLGA membrane; Phase transition method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. Shin, S. Jo, and A. G. Mikos, Biomimetic materials for tissue engineering, Biomaterials, 24, 4353 (2003) DOI: http://www.ncbi.nlm.nih.gov/pubmed/12922148   DOI
2 S. R. Caliaria, M. A. Ramirezb, and B. A. C. Harley, The development of collange -GAG scaffold-membrane composites for tendon tissue engineering, Biomaterials, 32(34), 8990 (2011).   DOI
3 C. J. Liao, C, F. Chen, J. H. Chen, S. F. Chiang, Y. J. Lin, and K. Y. Chan, Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method, Journal of Biomedical Materials Research, 59, 681 (2002). DOI: http://www.ncbi.nlm.nih.gov/pubmed/11774329
4 Agrawal, CM., Niederauer, G.G., and Athanasiou, K.A. Fabrication and characterization of PLA-PGA orthopaedic implants. Tissue Eng. 1, 241, 1995. DOI: http://www.ncbi.nlm.nih.gov/pubmed/19877903   DOI
5 Agrawal, CM., Niederauer, G.G., Micallef, D. M., and Athanasiou, K.A. The use of PLA-PGA polymers in orthopaedics. In: Wise, D., et al., eds. Encyclopedic Handbook of Biomaterials and Bioengineering. New York: Marcel Dekker, p. 2081, 1995.
6 Athanasiou, K.A., Schmitz, J.P., Schenck, R. C, Clem, M., Aufdemorte, T., and Boyan, B.D. The use of biodegradable implants for repairing large articular cartilage defects in the rabbit. Transactions of the Orthopaedic Research Society 17(1), 172, 1992.
7 Athanasiou, K.A., Niederauer, G.G., and Agrawal, CM. Sterilization, toxicity, biocompatibility, and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17(2), 93, 1996. DOI: http://www.ncbi.nlm.nih.gov/pubmed/8624401   DOI
8 S. I. Jeong, J. H. Kwon, and J. I. LIm, EVA-enhanced embedding medium for histological analysis of 3D porous scaffold material, Biomaterials, 26, 1405 (2009) DOI: http://www.ncbi.nlm.nih.gov/pubmed/19473850
9 Y. Y. Xie, J. S. Park and S. K. Kang, Study on the characteristics and biodegradable of synthetic PLGA membrane from lactic acid and glycolic acid. Journal of the Korea Academia-Industrial cooperation Society Vol. 16, No. 4 pp. 2965, 2015. DOI: http://scholar.ndsl.kr/schDetail.do?cn=JAKO201516351715641
10 Linbo Wu, Jiandong ding. In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomterials 25 9200) 5821-5830. DOI: http://www.ncbi.nlm.nih.gov/pubmed/15172494   DOI
11 C.M.Agrawal, Ph.D., P.E., D. Huang, M.S., J.P. Schmitz, D.D.S., Ph.D., and K.A. Athanasiou, Ph.D., P.E. Elevated temperature degradation of a 50:50 copolymer of PLA-PGA. Tissue engineering Volume 3, Number 4, 1997 DOI: http://online.liebertpub.com/doi/abs/10.1089/ten.1997.3.345   DOI
12 Hirenkumar K. Makadia and Steven J. Siegel. Poly lactic-co-glycolic acid(PLGA) as biodegradation controlled drug delivery carrier. Polymers, 3, 1377-1397; DOI: http://dx.doi.org/10.3390/polym3031377.(2011) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347861/   DOI