• Title/Summary/Keyword: mechanical abrasion

Search Result 316, Processing Time 0.023 seconds

Mechanical and Durability Characteristics of Latex-Modified Concrete Using Ultra Rapid Hardening Cement (초속경 시멘트를 이용한 라텍스 개질 콘크리트의 역학성능과 내구성능)

  • Park, Sang-Hyun;Jung, Si-young;Kim, Hyun-yu;Choi, Kyoung-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.5
    • /
    • pp.153-160
    • /
    • 2019
  • The purpose of this study was to investigate the mechanical and durability characteristics of latex-modified concrete using ultra rapid hardening cement : four types of mechanical tests including compressive strength, modulus of elasticity, flexural strength and bond strength were performed; and seven types of durability tests including resistance of concrete to chloride ion penetration, freeze-thaw resistance, scaling resistance, coefficient of thermal expansion, cracking tendency, abrasion resistance and drying shrinkage were performed. Required material performance of each test was determined in accordance with the Korea specification for repair of concrete and pavement repairing materials. The test results satisfied the required material performances, and presented a good mechanical and durability characteristics. In particularly, the materials showed early development of compressive strength, flexural strength and bond strength at 3 and 4 hours after curing. SEM photos were also taken to investigate the micro structures of the materials after chloride ion penetration test.

Mechanical Properties of Porous Concrete For Pavement Using Recycled Aggregate and Polymer (재생골재와 폴리머를 이용한 포장용 포러스 콘크리트의 역학적 특성)

  • Park Seung-Bum;Yoon Eui-Sik;Seo Dae-Seuk;Lee Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.595-602
    • /
    • 2005
  • The purpose of this study is to utilize recycled concrete aggregates as permeable pavement materials. This study evaluates mechanical properties and durability of porous concrete depending on mixing rates of recycled aggregates and polyme. As a result, void ratio and permeability coefficient of porous concrete for pavement increased a little as mixing rate of recycled aggregates increased. Void ratio and permeability coefficient increased a lot as mixing rate of polymer increased. As polymer was mixed $20\%$, national regulation of permeable concrete for pavement($8\%$ and 0.01cm/sec) was met. Compressive strength and flexural strength decreased as mixing rate of recycled aggregates increased but they increased a lot as mixing rate of polymer increased. Even when recycled aggregates were mixed $75\%\;with\;10\%$ polymer mixed, national regulation of pavement concrete(18MPa and 4.5MPa) was met. In addition, regarding sliding resistance, BPN increased as mixing rate of recycled aggregates increased. But BPN decreased as polymer was mixed. Compared to crushed stone aggregates, abrasion resistance and freeze-thaw resistance decreased as mixing rate of recycled aggregates Increased. When polymer was mixed, abrasion resistance and freeze-thaw resistance improved remarkably. Compared to non-mixture, $10\%$ mixture of polymer improved abrasion resistance and freeze-thaw resistance about $8.6\%$ and 3.8times respectively.

A Study on the Mechanical Properties of Steel Fiber Reinforced Porous Concrete for Pavement Using Slag Aggregate and Fly Ash (슬래그골재와 플라이애시를 이용한 강섬유 보강 포장용 투수콘크리트의 역학적 특성에 관한 실험적 연구)

  • Park, Seung-Bum;Lee, Jun;Jang, Young-Il;Lee, Byung-Jae
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.93-104
    • /
    • 2007
  • This study evaluates the mechanical properties of steel fiber reinforced porous concrete for pavement according to content of slag aggregate and fly ash to elicit the presentation of data and the way to enhance its function for the practical field application of porous concrete as a material of pavement. As a result, void ratio and permeability coefficient of porous concrete for pavement increased a little as mixing rate of slag aggregates increased. Void ratio and permeability coefficient increased a lot as mixing rate of fly ash decreased. As fly ash was mixed, national regulation of permeable concrete for pavement(8% and 0.1 cm/sec) was met. Compressive strength and flexural strength decreased as mixing rate of slag aggregates increased, but they increased a lot as mixing rate of fly ash increased. Even when slag aggregates were mixed 50% with 5% fly ash mixed, national regulation of pavement concrete(18MPa and 4.5MPa) was met. In addition, compared to non-mixture, flexural strength increased about 22.8% when 0.75vol.% of steel fiber was added. Regarding sliding resistance, BPN increased as mixing rate of slag aggregates increased. But BPN decreased as fly ash was mixed. Compared to crushed stone aggregates, abrasion resistance and fleers-thaw resistance decreased as mixing rate of slag aggregates increased. When fly ash was mixed, abrasion resistance and freeze-thaw resistance improved remarkably. Compared to non-mixture, 10% mixture of fly ash improved abrasion resistance and freeze-thaw resistance about 5.6% and 14.3 respectively.

  • PDF

Optimum Abrasing Condition for Recycled Fine Aggregate Produced by Low Speed Wet Abraser Using Sulfur (황산수를 사용한 저속 습식 마쇄법에 의한 순환잔골재의 최적 마쇄조건)

  • Kim, Jin-Man;Kim, Ha-Seog;Park, Sun-Gyu;Kim, Bong-Ju;Kwak, Eun-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.557-563
    • /
    • 2008
  • Recently, the amount of disposed construction materials like demolished concrete is growing fast and the shortage of natural concrete aggregate is becoming serious. Therefore, recycling of aggregate extracted from the demolished concrete is getting important and use of the recycled aggregate for concrete has been seriously considered. However, the use of the recycled aggregate even for low performance concrete is very limited because recycled aggregate which contains large amount of old mortar has very low quality. Therefore, removing the paste sticked to the recycled aggregate is very important in the manufacturing of high quality recycled aggregate. We have studied a series of research according to complex crushing method, which is removed the ingredient of cement paste from recycled fine aggregate using both the low speed wet abrasion crusher as mechanical process and the acid treatment as chemical processes. This paper is to analyze the quality of the recycled fine aggregate produced by those complex method and investigate optimum manufacturing condition for recycled fine aggregate by the design of experiments. The experimental parameters considered are water ratio, coase aggregate ratio, and abrasion time. As a result, data concerning the properties of recycled sand were obtained. It was found that high quality recycled fine aggregate could be to obtain at the condition of the fifteen minute of abrasion-crusher time and the over 1.0 of recycled coarse aggregate ratio.

Study on Quality Criteria for Transparent Soundproof Panels(1) - Evaluation of Mechanical Performance and Safety (투명방음판의 품질기준 설정에 관한 연구(1) - 기계적 특성 및 안전성 평가)

  • Chang, Tae-Sun;Kim, Chul-Hwan;Hwang, Cheol-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.755-761
    • /
    • 2009
  • The major advantage of transparent materials over traditional materials in noise barriers is aesthetics. The transparent panel materials such as clear plastic or glass are an ideal way of reducing or virtually eliminating the visual impact of a noise barrier. With the use of transparent materials, the drivers' view of the roadside and the sunlight penetration to the highway would not be blocked. With the use of transparent materials, the highway and barrier appear less imposing. Korean Industrial Standards for soundproof panels have been established. But, transparent soundproof panels are not included in this standards. And, some specifications provide only a few basic characteristics for transparent soundproof panels. To develop guidelines on quality criteria for transparent soundproof panel, their mechanical properties such as wind load resistance, safety under impact, and abrasion resistance were experimentally investigated.

  • PDF

THREE-BODY ABRASIVE WEAR IN A BALL-CRATERING TEST WITH LARGE ABRASIVE PARTICLES

  • Stachowiak, G.B.;Stachowiak, G.W.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.199-200
    • /
    • 2002
  • Three-body abrasive wear resistance of mild steel, low alloy steel (Bisalloy) and 27%Cr white cast iron was investigated using a ball-cratering test. Glass beads, silica sand, quartz and alumina abrasive particles with sizes larger than $100{\mu}m$ were used to make slurries. It was found that the wear rates of all three materials tested increased with time when angular abrasive particles were used and were rather constant when round particles were used. This increase in wear rates was mainly due to the gradual increase in ball surface roughness with testing time. Abrasive particles with higher angularity caused higher ball surface roughness. Mild steel and Bisalloy were more affected by this ball surface roughness changes than the hard white cast iron. Generally, three-body rolling wear dominated. The contribution of two-body grooving wear increased when the ball roughness was significant. More grooves were found when round particles were used or the size of the particles was decreased.

  • PDF

Wear and Friction Characteristics of SiC Reinforced Aluminium 6061 Alloy Composites (SiC 보강 A16061 복합재료의 마멸 및 마찰특성에 관한 연구)

  • 권재도;안정주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2122-2132
    • /
    • 1995
  • There are some cases which require to grasp the abrasion resistance property in the fields of the high-technology to be required the high specific strength and modulus. In this study, wear test with the various test temperature and velocity were performed in the SiCw/A16061 composite and A16061 matrix using the wear test machine of the ring-on-disc type. As the results, the friction and wear properties by various test temperature and velocity were examined. The worn surface has observed by scanning electron microscope in order to examine the wear mechanism.

Evaluation for Characteristics of Coal-mine Waste Concrete (석탄폐석을 이용한 콘크리트의 특성 연구)

  • 김광우;도영수;이상범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.2
    • /
    • pp.132-139
    • /
    • 2001
  • This study deals with coal-mine waste (CMW) for use in concrete as a replacement of normal aggregates. The CMW was collected from Sabuk region. Ganwon-do. Fine and coarse aggregates from CMW were prepared by using a crusher and separating debris with #4 sieve. CMW aggregates showed good physical and mechanical properties with having specific gravity over 2.65, absorption less than 1%, and abrasion ratio below 20%. However, particle shape of CMW was poor because of non-isotropic nature of matrix which cause particles to be long or flat. Since irregular particles caused a poor workability, to make workability better, a 1/4 of coarse aggregate was replaced with normal aggregate together with a superplasticizer. Compressive strength and other mechanical properties of CMW concrete were very good. Color of the concrete was darker than normal concrete due to black color of CMW. In conclusion, characteristics of CMW concrete was acceptable for use as a structural concrete material.

  • PDF

Wear Characteristics of Plastic Pinion Against Steel Gear for Different Pitch Line Velocities (운전속도에 따른 플라스틱기어의 마멸특성)

  • Kim, Chung-Hyeon;An, Hyo-Seok;Jeong, Tae-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1720-1729
    • /
    • 2001
  • Wear characteristics of Nylon and acetal pinions against steel gears for different pitch line velocities was studied with a power circulating gear test rig under unlubricated condition. Specific wear rate was measured as a function of tooth number, module, tooth width and total revolution. The worn tooth surfaces were examined with a profile projector. The Nylon pinion showed lower specific wear rate than the acetal pinion. However, the Nylon pinion was fractured at high tooth loads, whereas the acetal pinion exhibited a steady wear behavior. The wear characteristics of Nylon pinion varied significantly with the Pitch line velocity. Wear occurred most severely at the tooth tip and the region immediately below the pitch line of pinion. The dominant wear mechanisms were adhesion and abrasion.

Reciprocating Sliding Wear of Nylon and Polyacetal Against Steel (나일론과 폴리아세탈의 왕복동 마찰마멸특성에 관한 고찰)

  • Kim, Chung-Hyeon;An, Hyo-Seok;Jeong, Tae-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.786-793
    • /
    • 2000
  • Nylon, Polyacetal and PTFE were studied to gain a better understanding of their tribological behavior. Wear tests were conducted with reciprocating motion under dry sliding conditions. Friction coefficient and specific wear rate were measured as a function of sliding distance. The worn surfaces were examined with a Scanning Electron Microscope(SEM). Polyacetal showed lowest specific wear rates and PTFE exhibited lowest friction coefficient. The dominant wear mechanism found were adhesion and abrasion.