• Title/Summary/Keyword: measurement systems

Search Result 4,934, Processing Time 0.029 seconds

An Analysis of the Accuracy of Muzzle Velocity Measurement System (포구속도 계측 시스템의 정확도 분석)

  • Choi, Ju-Ho;Hwang, Eui-Sung;Park, Won-Woo;Hong, Sung-Soo;Yoo, Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.88-94
    • /
    • 1999
  • This paper presents an accuracy evaluation method for muzzle velocity measurement systems. Among various measuring techniques, the solenoid coil scheme and the doppler radar scheme are considered due to their popularity in applications. The error sources are first identified and their effects on the accuracy of the measuring systems are quantified using mathmatical equations. The theoritic accuracy limits are then verified through comparison with experimental results. From the accuracy point of view, they turn out to be standard velocity measuring systems.

  • PDF

Robustness of 2nd-order Iterative Learning Control for a Class of Discrete-Time Dynamic Systems

  • Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.363-368
    • /
    • 2004
  • In this paper, the robustness property of 2nd-order iterative learning control(ILC) method for a class of linear and nonlinear discrete-time dynamic systems is studied. 2nd-order ILC method has the PD-type learning algorithm based on both time-domain performance and iteration-domain performance. It is proved that the 2nd-order ILC method has robustness in the presence of state disturbances, measurement noise and initial state error. In the absence of state disturbances, measurement noise and initialization error, the convergence of the 2nd-order ILC algorithm is guaranteed. A numerical example is given to show the robustness and convergence property according to the learning parameters.

Color accuracy of imaging using color filters

  • Boher, P.;Leroux, T.;Patton, V. Collomb;Bignon, T.
    • Journal of Information Display
    • /
    • v.13 no.1
    • /
    • pp.7-16
    • /
    • 2012
  • In this paper, the problem concerning the color accuracy of imaging systems using color filters is examined. It is shown that the only solution to the problem is to build systems with the spectral response matching the CIE curves as closely as possible. If the spectral response does not closely match the CIE curves, it was demonstrated that calibration cannot solve the problem and will result in very unstable colorimeters. A practical solution that uses telecentric lenses on the sensor side in addition to dedicated color filters for each CCD detector is presented. For systems that closely match the CIE curves, an innovative method of improving the color accuracy based on the precise measurement of the spectral response is presented. The small discrepancies in the spectral response with regard to the CIE curves are corrected in different ways during the measurements. Finally, it is shown that the tristimulus calibration that is used for display measurement is very unstable for systems without CIE matching and is much more stable with systems that closely match the CIE curves.

A Study on the Improvement of the Test Process for Defense Systems Based on Quantitative Management (정량적 관리 기반 무기체계 시험업무 프로세스 개선 연구)

  • Tae Heum Na;Joo Yeoun Lee;Young Min Kim
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.spc1
    • /
    • pp.1-11
    • /
    • 2024
  • Today, the importance of test and evaluation of defense systems is increasing day by day. In performing efficient defense systems test works, process improvement based on quantitative management is essential. The purpose of this paper is to present the results of process improvement for the defense systems test works of the test organization based on quantitative management activities. As a methodology to confirm process improvement performance, the 'MPM(Managing Performance and Measurement)' practice area of the CMMI model was applied. The quantitative management model for defense systems test works was developed so that it could be practically applied not only to the entire test organization but also to the organization at the department level that actually performs the test work. Finally, the application cases of the quantitative management model for defense system test works and the results of process improvement were described.

Evaluation of Validity and Reliability of Inertial Measurement Unit-Based Gait Analysis Systems

  • Cho, Young-Shin;Jang, Seong-Ho;Cho, Jae-Sung;Kim, Mi-Jung;Lee, Hyeok Dong;Lee, Sung Young;Moon, Sang-Bok
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.872-883
    • /
    • 2018
  • Objective To replace camera-based three-dimensional motion analyzers which are widely used to analyze body movements and gait but are also costly and require a large dedicated space, this study evaluates the validity and reliability of inertial measurement unit (IMU)-based systems by analyzing their spatio-temporal and kinematic measurement parameters. Methods The investigation was conducted in three separate hospitals with three healthy participants. IMUs were attached to the abdomen as well as the thigh, shank, and foot of both legs of each participant. Each participant then completed a 10-m gait course 10 times. During each gait cycle, the hips, knees, and ankle joints were observed from the sagittal, frontal, and transverse planes. The experiments were conducted with both a camera-based system and an IMU-based system. The measured gait analysis data were evaluated for validity and reliability using root mean square error (RMSE) and intraclass correlation coefficient (ICC) analyses. Results The differences between the RMSE values of the two systems determined through kinematic parameters ranged from a minimum of 1.83 to a maximum of 3.98 with a tolerance close to 1%. The results of this study also confirmed the reliability of the IMU-based system, and all of the variables showed a statistically high ICC. Conclusion These results confirmed that IMU-based systems can reliably replace camera-based systems for clinical body motion and gait analyses.

Methodology for Measuring the Quality of Experience of E-Participation Systems (전자참여시스템의 체감품질 측정방법론)

  • Byun, Dae-Ho
    • Journal of Digital Convergence
    • /
    • v.10 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • E-participation is the term referring to the use of information and communication technologies to political participation by enabling citizens to connect with one another. Because e-participation systems are already constructed and operated, continuous usage is regarded as a major concern for successful e-participation. E-participation systems should guarantee ease of use, user satisfaction, and high quality. In addition, measuring the quality of e-participation systems will provide a useful strategy. This paper suggests a methodology for measuring quality of experience of the e-participation system and computing the quality score. We apply two concepts of usability measurement method and quality of experience that are most suitable. We provide the target of measurement,, the construct of quality of experience, the method of experiment and analysis of data, and the scoring method of quality of experience.

The Measurement Model for the Evaluation of Information Systems Service : The Case of Chinese SI Company (정보시스템 서비스 평가를 위한 측정모형의 개발 및 실증적 검증 : 중국 SI 기업 사례)

  • Lee, Sang-Jae;Lim, Gyoo-Gun
    • Journal of Information Technology Services
    • /
    • v.10 no.2
    • /
    • pp.141-162
    • /
    • 2011
  • The controls of Information Systems (IS) have been an more critical issue controls as the sophistication and integration of IS is more proceeded. ITGI (The Information Technology Governance Institute) of ISACA (Information Systems Audit and Control Association) has suggested COBIT (Control Objectives for Information and related Technology) and this has been widely recognized the evaluation model of IS controls. In COBIT, IS was evaluated in terms of process, information quality, and IT resources. This study used COBIT in order to suggest and empirically test an evaluation model of IS service. The data was collated from one major Chinese SI (Systems Integration) company in four domains of processes : planning and organization, acquisition and implementation, delivery and support, and monitoring. Seven factors are extracted using an exploratory factor analysis as follows : Overall IT planning process, technological assessment process in IT planning of IT, cost-benefit assessment process in IT planning, implementation process, support process, monitoring process, post-implementation evaluation process. The results of confirmatory analysis of three alternative measurement models indicated that the measurement model with one inherent or conceptual variable has greater model fitness than the other models. This study suggests the logical and general way to test and apply COBIT in evaluating IS services.

Support Vector Machine based Ballistic Limit Velocity Measurement for Small Caliber Projectile (SVM 기반 소화기 방호한계속도 측정방법 연구)

  • Kim, Jong-Hwan;Baik, Seungwon;Yoon, Byengjo;Jo, Sungsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.629-637
    • /
    • 2016
  • This paper presents a ballistic limit velocity measurement using the support vector machine that classifies two classes, the partial penetration and the complete penetration, by generating a linear separating hyperplane that equally divides the classes. For the ballistic limit velocity measurement, the previous methods(MIL-STD-662F and NIJ-STD-0101.06) have required a large number of experiments that caused high cost and time. However, the proposed method is not only flexible, requiring 0.85 ~ 4.8 times fewer experiments but also reliable, providing less than 2 % difference in results compared to the previous methods. For its validation, live fire experiments were conducted using various thickness SS400 iron plates as a target and two different types of live bullets such as 5.56 mm M193 and 7.62 mm M80.

Batch Time Interval and Initial State Estimation using GMM-TS for Target Motion Analysis (GMM-TS를 이용한 표적기동분석용 배치구간 및 초기상태 추정 기법)

  • Kim, Woo-Chan;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.285-294
    • /
    • 2012
  • Using bearing measurement only, target motion state is not directly obtained so that TMA (Target Motion Analysis) is needed for this situation. TMA is a nonlinear estimation technique used in passive SONAR systems. Also it is the one of important techniques for underwater combat management systems. TMA can be divided to two parts: batch estimation and sequential estimation. It is preferable to use sequential estimation for reducing computational load as well as adaptively to target maneuvers, batch estimation is still required to attain target initial state vector for convergence of sequential estimation. Selection of batch time interval which depends on observability is critical in TMA performance. Batch estimation in general utilizes predetermined batch time interval. In this paper, we propose a new method called the BTIS (Batch Time Interval and Initial State Estimation). The proposed BTIS estimates target initial status and determines the batch time interval sequentially by using a bank of GMM-TS (Gaussian Mixture Measurement-Track Splitting) filters. The performance of the proposal method is verified by a Monte Carlo simulation study.

Comparison between Two Coordinate Transformation-Based Orientation Alignment Methods (좌표변환 기반의 두 자세 정렬 기법 비교)

  • Lee, Jung-Keun;Jung, Woo-Chang
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.30-35
    • /
    • 2019
  • Inertial measurement units (IMUs) are widely used for wearable motion-capturing systems in the fields of biomechanics and robotics. When the IMUs are combined with optical motion sensors (hereafter, OPTs) for their complementary capabilities, it is necessary to align the coordinate system orientations between the IMU and OPT. In this study, we compare the application of two coordinate transformation-based orientation alignment methods between two coordinate systems. The first method (M1) applies angular velocity coordinate transformation, while the other method (M2) applies gyroscopic angle coordinate transformation. In M1 and M2, the angular velocities and angles, respectively, are acquired during random movement for a least-square algorithm to determine the alignment matrix between the two coordinate systems. The performance of each method is evaluated under various conditions according to the type of motion during measurement, number of data points, amount of noise, and the alignment matrix. The results show that M1 is free from drift errors, while drift errors are present in most cases where M2 is applied. Thus, this study indicates that M1 has a far superior performance than M2 for the alignment of IMU and OPT coordinate systems for motion analysis.