• 제목/요약/키워드: measurement outlier rejection

검색결과 5건 처리시간 0.015초

수중로봇 위치추정을 위한 베이시안 필터 방법의 실현과 거리 측정 특성 분석 (Implementation of Bayesian Filter Method and Range Measurement Analysis for Underwater Robot Localization)

  • 노성우;고낙용;김태균
    • 로봇학회논문지
    • /
    • 제9권1호
    • /
    • pp.28-38
    • /
    • 2014
  • This paper verifies the performance of Extended Kalman Filter(EKF) and MCL(Monte Carlo Localization) approach to localization of an underwater vehicle through experiments. Especially, the experiments use acoustic range sensor whose measurement accuracy and uncertainty is not yet proved. Along with localization, the experiment also discloses the uncertainty features of the range measurement such as bias and variance. The proposed localization method rejects outlier range data and the experiment shows that outlier rejection improves localization performance. It is as expected that the proposed method doesn't yield as precise location as those methods which use high priced DVL(Doppler Velocity Log), IMU(Inertial Measurement Unit), and high accuracy range sensors. However, it is noticeable that the proposed method can achieve the accuracy which is affordable for correction of accumulated dead reckoning error, even though it uses only range data of low reliability and accuracy.

Underwater Navigation of AUVs Using Uncorrelated Measurement Error Model of USBL

  • Lee, Pan-Mook;Park, Jin-Yeong;Baek, Hyuk;Kim, Sea-Moon;Jun, Bong-Huan;Kim, Ho-Sung;Lee, Phil-Yeob
    • 한국해양공학회지
    • /
    • 제36권5호
    • /
    • pp.340-352
    • /
    • 2022
  • This article presents a modeling method for the uncorrelated measurement error of the ultra-short baseline (USBL) acoustic positioning system for aiding navigation of underwater vehicles. The Mahalanobis distance (MD) and principal component analysis are applied to decorrelate the errors of USBL measurements, which are correlated in the x- and y-directions and vary according to the relative direction and distance between a reference station and the underwater vehicles. The proposed method can decouple the radial-direction error and angular direction error from each USBL measurement, where the former and latter are independent and dependent, respectively, of the distance between the reference station and the vehicle. With the decorrelation of the USBL errors along the trajectory of the vehicles in every time step, the proposed method can reduce the threshold of the outlier decision level. To demonstrate the effectiveness of the proposed method, simulation studies were performed with motion data obtained from a field experiment involving an autonomous underwater vehicle and USBL signals generated numerically by matching the specifications of a specific USBL with the data of a global positioning system. The simulations indicated that the navigation system is more robust in rejecting outliers of the USBL measurements than conventional ones. In addition, it was shown that the erroneous estimation of the navigation system after a long USBL blackout can converge to the true states using the MD of the USBL measurements. The navigation systems using the uncorrelated error model of the USBL, therefore, can effectively eliminate USBL outliers without loss of uncontaminated signals.

최적화 기법을 사용한 실내 이동 로봇의 위치 인식 (An Optimization Approach for Localization of an Indoor Mobile Robot)

  • 한준희;고낙용
    • 한국지능시스템학회논문지
    • /
    • 제26권4호
    • /
    • pp.253-258
    • /
    • 2016
  • 본 논문은 실내 주행 로봇의 위치 추정을 위해 최적화 기법을 적용한 방법에 대해 기술한다. 주행 로봇의 위치 추정에 사용되는 베이지안 필터 방법의 경우는 측정값과 환경 요소에 대한 불확실성을 고려하기위해 사용하는 조절 파라미터에 따라 추정성능이 달라진다. 또한 로봇동작 및 센서 측정 모델의 비선형성에 의하여 성능이 저하될 수 있다. 최적화 기법은 조절 파라미터가 적고 모델의 비선형성의 영향을 적게 받는다. 본 연구에서는 최적화 기법의 위치 추정 활용성을 보이기 위해 최적화 방법에 의한 추정성능과 EKF방법에 의한 추정 성능을 비교한다. 사용한 측정 센서는 초음파 위성 시스템(USAT, Ultrasonic Satellites system)으로서 4개의 비컨으로부터 로봇까지의 거리를 측정한다. 측정값의 비정상 오차를 제거하기 위하여 마할라노비스 거리(Mahalanobis Distance)를 이용한다. 최적화 기법은 거리 측정값을 사용하여 목적함수를 설계하고 반복계산을 통해 위치의 최적 값을 찾는다. 반복 수행을 위한 초기 위치를 베이시안 필터 방법을 통하여 적절히 설정함으로서 제안된 방법은 위치 추정 성능을 향상시키고 실행 시간을 단축시킬 수 있다.

노이즈에 강인한 지문 융선의 방향 추출 알고리즘 (Robust Orientation Estimation Algorithm of Fingerprint Images)

  • 이상훈;이철한;최경택;김재희
    • 대한전자공학회논문지SP
    • /
    • 제45권1호
    • /
    • pp.55-63
    • /
    • 2008
  • 지문의 방향 정보는 융선 강화, 정합, 분류기 등과 같이 전반적인 지문 인식 알고리즘의 기반 정보로 사용하므로 방향 정보의 오차는 지문 인식 성능에 직접적인 영향을 준다. 지문의 방향은 대부분의 영역에서는 융선의 흐름이 완만하게 변하는 전역적인 특성과 중심점(core point)이나 삼각주(delta point)와 같은 특이점(singular point) 부근에서 융선의 흐름이 급격히 변하는 지역적인 특성을 모두 갖고 있다. 따라서 융선의 방향 추출 시에 지역적인 특성만 강조하면 특이점 부근에서의 방향 변화를 민감하게 표현해 줄 수 있지만 노이즈에 취약한 단점이 발생하고 전역적인 특성만 강조하면 노이즈에 강인한 특성을 보이지만 특이점 부근에서 방향 변화에 둔감해진다. 본 논문에서는 지역적인 특성에 민감하면서도 노이즈에 강인한 적응적 지문 방향 추출 방법에 대하여 제안하였다. 또한, 상처에 의해 발생되는 방향성 노이즈는 반복 회귀 진단으로 이상치(outlier)들을 선별하여 제거함으로써 이에 대한 영향을 최소화하였다. 그리고 영역별로 측정 사이즈를 다르게 하여 노이즈에 강인하면서 특이점 부근에서는 융선 변화에 민감하게 방향을 추정하였다. 제안 방법의 평가를 위해 인조 지문(synthetic fingerprint)과 지문 인식의 성능 평가용으로 많이 사용되는 FVC 2002 데이터베이스를 사용하였다. 융선 방향 추출의 정확성은 융선의 방향 값을 사전에 알고 있는 인조 지문 데이터를 생성하여 평가하였고 최종 지문 인식 성능의 평가는 FVC 2002 데이터베이스를 사용하였다.

USBL, DVL과 선수각 측정신호를 융합한 심해 무인잠수정의 항법시스템 (Navigation System for a Deep-sea ROV Fusing USBL, DVL, and Heading Measurements)

  • 이판묵;심형원;백혁;김방현;박진영;전봉환;유승열
    • 한국해양공학회지
    • /
    • 제31권4호
    • /
    • pp.315-323
    • /
    • 2017
  • This paper presents an integrated navigation system that combines ultra-short baseline (USBL), Doppler velocity log (DVL), and heading measurements for a deep-sea remotely operated vehicle, Hemire. A navigation model is introduced based on the kinematic relation of the position and velocity. The system states are predicted using the navigation model and corrected with the USBL, DVL, and heading measurements using the Kalman filter. The performance of the navigation system was confirmed through re-navigation simulations with the measured data at the Southern Mariana Arc submarine volcanoes. Based on the characteristics of the measurements, the design process for the parameters of the system modeling error covariance, measurement error covariance, and initial error covariance are presented. This paper reviews the influence of the outliers and blackout of the USBL and DVL measurements, and proposes an outlier rejection algorithm that is robust to USBL blackout. The effectiveness of the method is demonstrated with re-navigation for the data that includes USBL blackouts.