• 제목/요약/키워드: measurement cost

검색결과 1,646건 처리시간 0.038초

A Substation-Oriented Approach to Optimal Phasor Measurement Units Placement

  • Bao, Wei;Guo, Rui-Peng;Han, Zhen-Xiang;Chen, Li-Yue;Lu, Min
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.18-29
    • /
    • 2015
  • State Estimation (SE) is the basis of a variety of advanced applications used in most modern power systems. An SE problem formed with enough phasor measurement units (PMUs) data is simply a linear weighted least squares problem requiring no iterations. Thus, designing a minimum-cost placement of PMUs that guarantees observability of a power system becomes a worthy challenge. This paper proposes an equivalent integer linear programming method for substation-oriented optimal PMU placement (SOOPP). The proposed method uses an exhaustive search to determine a globally optimal solution representing the best PMU placement for that particular power system. To obtain a more comprehensive model, contingencies and the limitation of the number of PMU measurement channels are considered and embodied in the model as changes to the original constraints and as additional constraints. The proposed method is examined for applicability using the IEEE 14-bus, 118-bus and 300-bus test systems. The comparison between SOOPP results and results obtained by other methods reveals the excellence of SOOPP. Furthermore, practical large-scale power systems are also successfully analyzed using SOOPP.

초정밀 광학식 변위 측정을 위한 센서 구호 밀 신호 처리 시스템 (Sensor Structure and Signal Processing System for Precision Optical Displacement Measurement)

  • 오세백;김경찬;김수현;곽윤근
    • 한국정밀공학회지
    • /
    • 제18권8호
    • /
    • pp.40-47
    • /
    • 2001
  • Optical measurement methods make it possible to detect object displacements with high resolution and noncontact measurements. Also, they are very robust against EMI noises and have long operation range. An optical triangulation sensor is one of widely used displacement measurement sensors for its sub-micron resolution, fast response, simple structure, and low cost. However. there are several errors caused by inclinations of a surface. speckle effects, power fluctuations of light sources, and noises of detectors. In this paper, in order to minimize error effects, we performed error analysis and proposed a new structure. Then, we setup a new modeling method and verify it through simulations and experiments. Based on the new model. we propose a new sensor structure and establish design criteria. Finally, we design a signal processing system to overcome a resolution-limited problem of light detectors. The resolution of the proposed system is 0.2${\mu}{\textrm}{m}$ in 5mm operating range.

  • PDF

시뮬레이션 환경에서 사진측량기법을 이용한 손 치수 측정 방법에 대한 연구 (An Approach to Measure Anthropometric Data of Simulated Human Hand Using Photogrammetry)

  • 장지홍
    • 한국정보전자통신기술학회논문지
    • /
    • 제9권5호
    • /
    • pp.511-517
    • /
    • 2016
  • 손 부위의 인체측정자료는 시용자중심 설계의 관점에서 수부와 관련된 다양한 제품의 설계에 중요한 요소이다. 전통적인 인체치수조사에서 측정자를 사용하는 직접측정법은 측정 시간의 누적, 원천 자료 미확보, 측정자간 신뢰도 등에 대한 단점을 가지고 있다. 이를 보완하기 위한 3D 스캐너는 고비용, 이동성 제한 등의 단점을 가지고 있다. 이러한 단점들을 보완할 수 있는 사진측량법에 의한 손 부위 인체측정자료의 효율적인 수집에 관한 연구를 수행하였다. 직/간접 측정 결과의 비교 과정에서 발생할 수 있는 오차를 최소화하기 위하여 시뮬레이션 환경에서 직/간접 측정을 실시하였다. 사진측량법을 이용한 손 부위 인체치수의 측정 가능성을 확인하였다.

3차원 영상처리를 이용한 암반 사면의 절리 측정에 관한 연구 (Measurement of Rock Slope Joint using 3D Image Processing)

  • 이승호;황영철;심석래;정태영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.854-861
    • /
    • 2005
  • Studied accuracy and practical use possibility of joint measurement that using 3D laser scanner to rock slope. Measured joint of Rock slope and comparison applied 3 dimension laser scanner and clinometer. 3D laser scanning system preserves on computer calculating to 3 dimension coordinate scaning laser to object. and according to laser measurement method of interior, produce correct vector value from charge-coupled device(CCD) or laser reciver and telegram register and time measuring equipment. Create of object x, y, z point coordinates to 3 dimension space of computer. Such 3 dimension point datum (Point Clouds) forms relocate position informations that exist to practical space to computer space. Practical numerical values related between each other. Compared joint distribution and direction that measured by laser scanner and clinometer. By the result, Distribution of joint projected almost equally. Could get more joint datas by measurement of 3 dimension scanner than measured by clinometer. Therefore, There is effect that objectification of rock slope investigation data, shortening of investigation periods, investigation reduction of cost. could know that it is very effective method in joint measuring.

  • PDF

진동환경에 강인한 순차적 측정 오차 공분산값을 이용한 적응 자세 결정 (Vibration-Robust Adaptive Attitude Reference System Using Sequential Measurement Noise Covariance)

  • 김종명;이현재
    • 한국항공우주학회지
    • /
    • 제44권4호
    • /
    • pp.308-315
    • /
    • 2016
  • 본 논문은 관성 항법 시스템(Inertial Navigation System)을 활용한 자세 및 방향 결정시스템(Attitude & Heading Reference System)의 성능을 향상시키기 위한 새로운 기법인, 순차적 측정 오차 공분산(Sequential Measurement Noise Covariance) 기법을 제시하였다. 관성 센서는 시간이 지남에 따라 발생하는 적분오차와 진동이나 가속구간과 같은 외란이 가해 졌을 때 성능이 저하된다는 단점이 있다. 특히, 저가의 관성 센서의 경우 이러한 현상이 더욱 두드러지게 나타난다. 이를 극복하기 위한 알고리즘들은 많이 존재한다. 하지만 가장 일반적으로 사용되는 확장 칼만 필터의 경우 가속도계를 사용할 때 측정값(Measurement)이 일정 범위를 넘어가면 센서값을 배제하는 방법을 사용한다. 본 논문에서 제안하는 기법은 범위를 설정하지 않고 과거의 데이터를 순차적으로 활용하여 측정값의 가중치를 변화하는 기법이다. 최종적으로 제안된 기법을 수치 시뮬레이션을 통해 검증하였다.

임도 노선측량 작업의 작업분석 (Work analysis of route survey work on forest-road)

  • 권형근;이준우;최성민;염인환
    • 농업과학연구
    • /
    • 제40권3호
    • /
    • pp.209-214
    • /
    • 2013
  • This study examined the work time, work posture, and work intensity for the actual measurement step in forest road the design work that was being carried out. The measurement of the forest road was being carried by a team of three workers and a team of four workers. The examination of work time found that the measurement of 1km took about 8 hours for the four-worker team and 12 hours for the three-worker team. The examination of work intensity found that the energy metabolic rates of the three-worker team were lower than four-worker team. Because their energy consumption per minute decreased as their work time and rest time increased. Furthermore, when appropriate rest time was applied according to work time, the energy metabolic rate decreased and the work intensity became lower. The four-worker team was more advantageous from the time and cost aspects of the forest road measurement work. Furthermore, as the rest time was very low compared to the work time, more efficient forest road measurement work would be possible if the work intensity was lowered by considering the rest time when calculating the standard work time.

Object Dimension Estimation for Remote Visual Inspection in Borescope Systems

  • Kim, Hyun-Sik;Park, Yong-Suk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권8호
    • /
    • pp.4160-4173
    • /
    • 2019
  • Borescopes facilitate the inspection of areas inside machines and systems that are not directly accessible for visual inspection. They offer real-time, up-close access to confined and hard-to-access spaces without having to dismantle or destructure the object under inspection. Borescopes are ideal instruments for routine maintenance, quality inspection and monitoring of systems and structures. The main application being fault or defect detection, it is useful to have measuring capability to quantify object dimensions in a target area. High-end borescopes use multi-optic solutions to provide measurement information of viewed objects. Multi-optic solutions can provide accurate measurements at the expense of structural complexity and cost increase. Measuring functionality is often unavailable in low-end, single camera borescopes. In this paper, a single camera measurement solution that enables the size estimation of viewed objects is proposed. The proposed solution computes and overlays a scaled grid of known spacing value over the screen view, enabling the human inspector to estimate the size of the objects in view. The proposed method provides a simple means of measurement that is applicable to low-end borescopes with no built-in measurement capability.

기상측정 및 CAM 자동화를 통한 금형 제작 공정 개선 (Improvement of machining process for mold parts using on-machine measuring system and CAM automation)

  • 박해웅;윤재웅;이춘규
    • Design & Manufacturing
    • /
    • 제16권1호
    • /
    • pp.21-26
    • /
    • 2022
  • In the CNC machining process, problems such as lowering of machine operation rate, setting errors, and machining precision occur due to the increase in setting time and preparation time. These machining errors cause delays in delivery and increase in cost due to an increase in the number of mounting and dismounting of the workpiece, an increase in measurement and reprocessing time, and an increase in the finishing time in the assembly process. Therefore, in this study, by automating the setting of the work piece using OMV (On Machine Verification), which is a meteorological measurement system, the preparation time for machining the work piece and the setting accuracy were improved, the rework rate was reduced, and the mold manufacturing process was shortened. Through the advancement, standardzation, and automation of the mold part manufacturing process, we have improved productivity by minimizing low-value-added repetitive tasks. In addition, the measurement time was reduced by more than 50% and the machining measurement rate was improved by more than 20%, eliminating repetitive work for correcting machining defects, and reducing the work preparation time by more than 15% through automatic setting.

Development of Plantar Pressure Measurement System and Personal Classification Study based on Plantar Pressure Image

  • Ho, Jong Gab;Kim, Dae Gyeom;Kim, Young;Jang, Seung-wan;Min, Se Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.3875-3891
    • /
    • 2021
  • In this study, a Velostat pressure sensor was manufactured to develop a plantar pressure measurement system and a C#-based application was developed to monitor and collect plantar pressure data in real time. In order to evaluate the characteristics of the proposed plantar pressure measurement system, the accuracy of plantar pressure index and personal classification was verified by comparing with MatScan, a commercial plantar pressure measurement system. As a result, the output characteristics according to the weight of the Velostat pressure sensor were evaluated and a trend line with the reliability of r2 = 0.98 was detected. The Root Mean Square Error(RMSE) of the weighted area was 11.315 cm2, the RMSE of the x coordinate of Center of Pressure(CoPx) was 1.036 cm and the RMSE of the y coordinate of Center of Pressure(CoPy) was 0.936 cm. Finally, inaccuracy of personal classification, the proposed system was 99.47% and MatScan was 96.86%. Based on the advantage of being simple to implement and capable of manufacturing at low cost, it is considered that it can be applied to various fields of measuring vital signs such as sitting posture and breathing in addition to the plantar pressure measurement system.