• Title/Summary/Keyword: measurement and modeling

Search Result 1,295, Processing Time 0.032 seconds

3-D Gravity Terrain Inversion for High Resolution Gravity Survey (고정밀 중력 탐사를 위한 3차원 중력 지형 역산 기법)

  • Park, Gye-Soon;Lee, Heui-Soon;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.691-697
    • /
    • 2005
  • Recently, the development of accurate gravity-meter and GPS make it possible to obtain high resolution gravity data. Though gravity data interpretation like modeling and inversion has significantly improved, gravity data processing itself has improved very little. Conventional gravity data processing removes gravity effects due to mass and height difference between base and measurement level. But, it would be a biased density model when some or whole part of anomalous bodies exist above the base level. We attempted to make a multiquadric surface of the survey area from topography with DEM (Digital Elevation Map) data. Then we constituted rectangular blocks which reflect real topography of the survey area by the multiquadric surface. Thus, we were able to carry out 3-D inversions which include information of topography. We named this technique, 3-D Gravity Terrain Inversion (3DGTI). The model test showed that the inversion model from 3DGTI made better results than conventional methods. Furthermore, the 3-dimensional model from the 3DGTI method could maintain topography and as a result, it showed more realistic geologic model. This method was also applied on real field data in Masan-Changwon area. Granitic intrusion is an important geologic characteristic in this area. This method showed more critical geological boundaries than other conventional methods. Therefore, we concluded that in the case of various rocks and rugged terrain, this new method will make better model than convention ones.

Flood Inflow Estimation at Large Multipurpose Dam using Distributed Model with Measured Flow Boundary Condition at Direct Upstream Channels (직상류 계측유량경계조건과 분포형모델을 이용한 대규모 다목적댐 홍수유입량 산정)

  • Hong, Sug-Hyeon;Kang, Boosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1039-1049
    • /
    • 2015
  • The inflow estimation at large multipurpose dam reservoir is carried out by considering the water balance among the discharge, the storage change during unit time interval obtained from the observed water level near dam structure and area-volume curve. This method can be ideal for level pool reservoir but include potential errors when the inflow is influenced by the water level slope due to backwater effects from upstream flood inflows and strong wind induced by typhoon. In addition, the other uncertainties arisen from the storage reduction due to sedimentation after the dam construction and water level noise due to mechanical vibration transmitted from the electric power generator. These uncertainties impedes the accurate hydraulic inflow measurement requiring exquisite hydrometric data arrangement for reservoir waterbody. In this study, the distributed hydrologic model using UBC-3P boundary setting was applied and its feasibility was evaluated. Finally, the modeling performance has been verified since the calculated determination coefficient has been in between 0.96 to 0.99 after comparing with observed peak inflow and total inflow at Namgang dam reservoir.

Soil Water Storage and Antecedent Precipitation Index at Gwangneung Humid-Forested Hillslope (광릉 산지사면에서의 선행강우지수와 토양저류량 비교연구)

  • Gwak, Yong-Seok;Kim, Su-Jin;Lee, Eun-Hyung;Hamm, Se-Yeong;Kim, Sang-Hyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.1
    • /
    • pp.30-41
    • /
    • 2016
  • The temporal variation of soil water storage is important in hydrological modeling. In order to evaluate an antecedent wetness state, the antecedent precipitation index (API) has been used. The aim of this article is to compare observed soil water storage with APIs calculated by widely used four equations, to configure the relationship between soil water storage and API by a regression model for one-year(2009), and to predict the soil water storage for the next two years(2010~2011). The soil water storage was evaluated from the observed soil moisture dataset in soil depths of 10, 30, 60cm at 21 locations by TDR measurement system for 3 years. As a result, API with the exponential function among the four equations can describe the variation of the observed soil water storage. Monthly optimized parameters of the API's equations seemed to be roughly related with the (potential) evapotranspiration (PET). Using revised monthly optimized parameters of APIs considering the seasonal pattern of PET, we characterize the relationship between API and the observed soil water storage for one year, which looks better than those of other researches.

Numerical Research on the Lock-in Compensation Method of a Ring Laser Gyroscope for Reducing INS Alignment Time (관성항법장치 초기정렬시간 단축을 위한 링레이저 자이로 lock-in오차 보상방법의 수치해석적인 분석)

  • Shim, Kyu-Min;Jang, Suk-Won;Paik, Bok-Soo;Chung, Tae-Ho;Moon, Hong-Key
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.275-282
    • /
    • 2009
  • Generally, the sinusoidal cavity dither is adopted to ring laser gyroscope for eliminating the lock-in which is non-linear effect at the small rotation input. Despite this method, there are some remained errors which are generated at the dither turnaround, and those errors produce random walk which is a general character of a ring laser gyroscope. As one of the numerous research results for compensating these errors, there is a special lock-in compensation method which is the method of error estimation and compensation by comparing the beat signal periods of before and after the dither turnarounds. In this paper, by ring laser gyroscope modeling and numerical analysis, we verified the theoretical validity and confirmed the effectiveness of this method in expectation of the possible beat signal measurement time resolution. As a result, we confirmed the random walk decreases from a-half to a-third by this lock-in compensation method. So, it is expected to be a remarkable method for reducing the INS alignment time.

Managing the Reverse Extrapolation Model of Radar Threats Based Upon an Incremental Machine Learning Technique (점진적 기계학습 기반의 레이더 위협체 역추정 모델 생성 및 갱신)

  • Kim, Chulpyo;Noh, Sanguk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.4
    • /
    • pp.29-39
    • /
    • 2017
  • Various electronic warfare situations drive the need to develop an integrated electronic warfare simulator that can perform electronic warfare modeling and simulation on radar threats. In this paper, we analyze the components of a simulation system to reversely model the radar threats that emit electromagnetic signals based on the parameters of the electronic information, and propose a method to gradually maintain the reverse extrapolation model of RF threats. In the experiment, we will evaluate the effectiveness of the incremental model update and also assess the integration method of reverse extrapolation models. The individual model of RF threats are constructed by using decision tree, naive Bayesian classifier, artificial neural network, and clustering algorithms through Euclidean distance and cosine similarity measurement, respectively. Experimental results show that the accuracy of reverse extrapolation models improves, while the size of the threat sample increases. In addition, we use voting, weighted voting, and the Dempster-Shafer algorithm to integrate the results of the five different models of RF threats. As a result, the final decision of reverse extrapolation through the Dempster-Shafer algorithm shows the best performance in its accuracy.

A Localized Secular Variation Model of the Geomagnetic Field Over Northeast Asia Region between 1997 to 2011 (지역화된 동북아시아지역의 지구자기장 영년변화 모델: 1997-2011)

  • Kim, Hyung Rae
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.51-63
    • /
    • 2015
  • I produced a secular variation model of geomagnetic field by using the magnetic component data from four geomagnetic observatories located in Northeast Asia during the years between 1997 and 2011. The Earth's magnetic field varies with time and location due to the dynamics of fluid outer core and the magnetic observatories on the surface measure in time series. To adequately represent the magnetic field or secular variations of the Earth, a spatio-temporal model is required. In making a global model, satellite observations as well as limited observatory data are necessary to cover the regions and time intervals. However, you need a considerable work and time to process a huge amount of the dataset with complicated signal separation procedures. When you update the model, the same amount of chores is demanded. Besides, the global model might be affected by the measurement errors of each observatory that are biased and the processing errors in satellite data so that the accuracy of the model would be degraded. In this study, as considered these problems, I introduced a localized method in modeling secular variation of the Earth's magnetic field over Northeast Asia region. Secular variation data from three Japanese observatories and one Chinese observatory that are all in the INTERMAGNET are implemented in the model valid between 1997 to 2011 with the interval of 6 months. With the resulting model, I compared with the global model called CHAOS-4, which includes the main, secular variation and secular acceleration models between 1997 to 2013 by using the three satellites' databases and INTERMAGNET observatory data. Also, the geomagnetic 'jerk' which is known as a sudden change in the time derivatives of the main field of the Earth, was discussed from the localized secular acceleration coefficients derived from spline models.

A Study on the Errors for the Improved Version of the Virtual Transmission-Line Model (개선된 가상의 전송선로 모델의 오차 연구)

  • 조유선;김세윤;김영식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.971-981
    • /
    • 2002
  • An open-ended coaxial probe method has been considered as one of effective tools for measuring electrical properties of its contacted material without shaping and fitting. The measured reflection coefficient at the probe's end is able to convert into the corresponding complex permittivity by employing the improved version of virtual transmission-line model Presented by our lab already. But the error of complex permittivity converted by equivalent model increases as the operating frequency ascends high. The errors of complex permittivity in the open-ended coaxial probe can be yielded compositively by the imperfect contact or probe, manufacture error of probe and complex permittivity error of reference material etc. Therefore it is necessary to limit the problem to identify the error causes in high frequency. In this paper, the errors which are resulted from the measurement of reflection coefficient are removed by using the FDTD(Finite-Difference Time-Domain) method, the error causes are limited the conversion model problem. And the error study of the improved conversion model is performed from several viewpoints. At first, the local minimum of parameter to be calculated by the iteration method in the conversion model is checked. At second, the modeling of the equivalent model is checked in the frequency range. From this study, we know the valid range of the improved conversion model.

A Study on acceptance of multi-national product according to Korean consumer's purchasing tendency: Focusing on high involvement product (한국소비자의 구매성향에 따른 복합원산지제품 수용에 관한 연구: 고관여제품을 중심으로)

  • Kang, Inwon;Son, Jeyoung;Kim, Yeaji;Lee, Hyejin
    • International Area Studies Review
    • /
    • v.22 no.4
    • /
    • pp.123-143
    • /
    • 2018
  • Many studies on the acceptance of multi-national products have made academic contributions by offering various implications. However, there have been relatively few studies on the attitudes and behaviors of multi-national products depending on the purchasing tendency of consumers. The purpose of this study is to investigate how acceptance process of multi-national product, which is high involvement, appears by sorting consumers' purchasing tendency into rational consumption tendency, brand pursuit tendency, and consciousness of other people. Also, in order to supplement the measurement method of existing research, this study sought to analyze the acceptance behavior of consumers more precisely by classifying the situation before and after exposures of multi-national origin information on products. For this, 266 consumers were surveyed and statistical analysis was conducted through structural equation modeling. As a result of the research model, it was found that consciousness of other people has a significant effect on susceptibility and antipathy of multi-national product. In addition, antipathy against multi-national products has more powerful effect than susceptibility.

The Structural Relationship among Personality, Negative Emotion, Motivation, Career Maturity on Mathematical Academic Achievement of Elementary School Students (초등학생의 수학 학업성취도에 영향을 주는 성격, 부정적 정서, 동기특성, 진로 성숙도의 구조적 관계 분석)

  • Kim, Jung Hoon;Lee, Moonsoo
    • Education of Primary School Mathematics
    • /
    • v.25 no.4
    • /
    • pp.279-295
    • /
    • 2022
  • This study was conducted to present implications for mathematics education by identifying the structural relationship among personality, negative emotion, motivation, and career maturity that affects elementary school student's mathematical academic achievement. The participants conveniently sampled 179 students, from 4th to 6th graders enrolled in the same elementary school, and data on their psychological variables were collected in the form of secondary data. The hypothetical structural equation model established based on prior studies was verified with a two-stage approach based on the collected data. It was confirmed that construct validity and construct reliability were secured through assessing the measurement model. In addition, as a result of analyzing the path coefficient of the final structural equation model, five paths were found to be significant: 'personality→motivation', 'personality→career maturity', 'negative emotion→motivation', and 'negative motivation→mathematical academic achievement'. In particular, the path of 'negative emotion→negative motivation→mathematics academic achievement' that can be confirmed through the results needs to moderate negative emotions to improve mathematical academic achievement, and at this time, negative motivation should be considered together.

A Study on the Geomagnetic Reference Field Modeling from the Triaxial Magnetometer Data Onboard KOMPSAT-II (아리랑위성 2호의 삼축자력계로부터 관측된 지구자기장 모델 연구)

  • Kim, Hyung-Rae;Hwang, Jong-Sun;Kim, Jeong-Woo;Lee, Seon-Ho
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.377-384
    • /
    • 2012
  • The main field component of the Earth's magnetic field was modeled from the tri-axial magnetometer onboard KOrean MultiPurpose SATellite-II (KOMPSAT-II) for the purpose of satellite attitude control. The model computed by the KOMPSAT-II magnetometer measurement data is compared with the International Geomagnetic Reference Field (IGRF) model of a degree of up to 13 in spherical harmonic coefficients. The previous study with KOMPSAT-I (Kim et al. 2004) indicated a good correlation of power spectrum of spherical harmonic coefficients with respect to the degree up to 5. This study, however, showed an agreement of the degree up to 8-9 of the coefficient power spectrum and a discrepancy between degrees 10 and 13. We have concluded that relevant data selection process, removal of the external field from the data in the high latitude region, an accuracy of the magnetometer all play an important role in finding a coherence with the IGRF model. This study will be extended to the secular variation model of geomagnetism if longer-period data become available.