• Title/Summary/Keyword: measured displacement

Search Result 1,719, Processing Time 0.031 seconds

Investigation of Generative Contactile Force of Frog Muscle under Electrical Stimulation

  • Park, Suk-Ho;Jee, Chang-Yeol;Kwon, Ji-Woon;Park, Sung-Jin;Kim, Byung-Kyu;Park, Jong-Oh
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1914-1919
    • /
    • 2006
  • Recently, the microrobots powered by biological muscle actuators were proposed. Among the biological muscle actuators, frog muscle is well known as a good muscle actuator and has a large displacement, actuation forces and piezoelectric properties. Therefore, for the application of the biomimetic microrobot, this paper reports the electromechanical properties of frog muscle. First of all, the experimental setup has been established for measuring generative force of the frog muscle. Through the various electrical stimulating inputs to the frog muscle, we measured the contractile force of the frog muscle. From the measuring results, we found that the actuating contractile force responses of the frog muscle are determined by the amplitude, frequency, duty ratio, and wave form of the stimulation signal. This study will be beneficial for the development of the microrobot actuated by frog muscle.

PERFORMANCE AND EXHAUST GAS CHARACTERISTICS ON DIESEL PARTICULATE FILTER TRAP

  • Oh, S.K.;Baik, D.S.;Han, Y.C.
    • International Journal of Automotive Technology
    • /
    • 제3권3호
    • /
    • pp.111-115
    • /
    • 2002
  • Suddenly increasing numbers of automobiles result in making worse air pollution problems. In particular, the emissions from automobiles affect badly on atmosphere. Nowadays, research on catalyst converter and filter trap as a modem technology is very active because PM is designated as a major cancer material and stringent regulations on this are necessary and required. The ceramic filter is very efficient in reducing particular materials up to 80-90% and is evaluated as a very efficient after-treatment technology. However, it comes with decreased engine performance due to increased back-pressure occurred by thermal crack. In order to solve these problems, several methods are proposed such as fuel additive, electric heater and burner types. This experimental study has been conducted with equipped and unequipped a ceramic filter on a displacement 11,000cc diesel engine and compared in terms of engine performance and emission. To measure the emission, D-13 mode is applied and measured quantities of the exhaust gases, particularly in CO, HC, PM, and NOx. Therefore, this research is focused on the basic mechanism and characteristics on harmful materials generated by ceramic filter.

천층 광폭터널의 내공변위 및 침하거동특성 예측을 위한 수치해석적 연구 (A Numerical Analysis Study for the Prediction of Convergences and Characteristics of Subsidence behavior in Shallow, Wide Tunnel Excavation)

  • 문승백;송승곤;양형식;전양수;한공창
    • 터널과지하공간
    • /
    • 제11권1호
    • /
    • pp.20-29
    • /
    • 2001
  • 터널 굴착으로 인한 천반의 최종 변위는 내공변위 곡선을 시간과 거리에 따른 임의의 함수로 표현하여 예측할수 있다. 본 연구에서는 도심지 주변의 천층 광폭터널에서의 변위 예측식의 적합성을 검토하였다. 연구 대상 터널은 도심과 무등산 공원의 경계에 위치하여 터널 상부의 토피고가 낮고 폭이 넓은 터널이다. 연구 결과, 토피고가 낮은 갱구부에서 풍화암 지반이 강관다단 그라우팅 및 forepoling 보강에 의해 탄소성지반이 아닌 탄성지반에 준하는 특성을 나타내는 풍화암 내지 연암층으로 된 연구대상 터널의 경우 지수함수식이 더 적합한 것으로 나타났다.

  • PDF

이동하중을 받는 판형교의 동적 거동에 대한 실험적 연구 (Experimental Study on Dynamic Responses of Plate-Girder Bridges under Moving Loads)

  • 임성순
    • 한국강구조학회 논문집
    • /
    • 제12권4호통권47호
    • /
    • pp.407-416
    • /
    • 2000
  • 본 연구는 실험적인 방법으로 이동하중을 받는 판형교의 동적 응답을 연구하였다. 판형교의 상부 슬래브는 판요소로, 거더는 보요소로 이상화였다. 이동하중과 판형교는 각각 소규모 차량모델과 교량모델로 제작하였다. 이동 하중을 받는 판형교의 동적 응답은 변형계, 변위계, 가속도계 및 변형도 측정기를 이용하여 측정하였고 측정한 자료로부터 얻은 최대동적응답을 유한요소법의 결과와 비교하였다. 실험적인 모형실험으로 판형교의 동적응답을 얻을 수 있음을 알 수 있다.

  • PDF

마찰감쇠기-가새 시스템의 확률분포 기반 등가선형화에 관한 실험적 연구 (Experimental Study on the Probability-based Equivalent Linearization of a Friction Damper-Brace System)

  • 강경수;박지훈
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.394-403
    • /
    • 2006
  • A new equivalent linearization technique is proposed for a friction damper-brace system (FDBS) idealized as a elastoplastic system. The equivalent linearization technique utilizes secant stiffness and dissipated energy defined by the probability distribution of the extremal displacement of the FDBS. In addition, a conversion scheme is proposed so that an equivalent linear system is designed first and converted to the FDBS. For comparative study, an existing model update technique based on system identification is modified in a form appropriate to update single element. For the purpose of verification, shaking table tests of a small scale three-story shear building model, in which a rotational FDBS is installed, are conducted and equivalent linear systems are obtained using the proposed technique and the model update technique. Complex eigenvalue analysis is conducted for those equivalent linear systems, and the natural frequencies and modal damping ratios are compared with those obtained from system identification. Additionally, RMS and peak responses obtained from time history analysis of the equivalent linear systems are compared with measured ones.

Real-time seismic structural response prediction system based on support vector machine

  • Lin, Kuang Yi;Lin, Tzu Kang;Lin, Yo
    • Earthquakes and Structures
    • /
    • 제18권2호
    • /
    • pp.163-170
    • /
    • 2020
  • Floor acceleration plays a major role in the seismic design of nonstructural components and equipment supported by structures. Large floor acceleration may cause structural damage to or even collapse of buildings. For precision instruments in high-tech factories, even small floor accelerations can cause considerable damage in this study. Six P-wave parameters, namely the peak measurement of acceleration, peak measurement of velocity, peak measurement of displacement, effective predominant period, integral of squared velocity, and cumulative absolute velocity, were estimated from the first 3 s of a vertical ground acceleration time history. Subsequently, a new predictive algorithm was developed, which utilizes the aforementioned parameters with the floor height and fundamental period of the structure as the new inputs of a support vector regression model. Representative earthquakes, which were recorded by the Structure Strong Earthquake Monitoring System of the Central Weather Bureau in Taiwan from 1992 to 2016, were used to construct the support vector regression model for predicting the peak floor acceleration (PFA) of each floor. The results indicated that the accuracy of the predicted PFA, which was defined as a PFA within a one-level difference from the measured PFA on Taiwan's seismic intensity scale, was 96.96%. The proposed system can be integrated into the existing earthquake early warning system to provide complete protection to life and the economy.

나노인덴테이션과 주사탐침현미경을 이용한 박막 재료의 특성평가 (Characterization of Thin Film Materials by Nanoindentation and Scanning Probe Microscopy)

  • 김봉섭;윤존도;김종국
    • 한국재료학회지
    • /
    • 제13권9호
    • /
    • pp.606-612
    • /
    • 2003
  • Surface and mechanical properties of thin films with submicron thickness was characterized by nanoindentation with Berkovich and Vickers tips, and scanning probe microscopy. Nanoindention was made in a depth range of 15 to 200 nm from the surface by applying tiny force in a range from 150 to $9,000 \mu$N. Stiffness, contact area, hardness, and elastic modulus were determined from the force-displacement curve obtained. Reliability was first tested by using fused quartz, a standard sample. Elastic modulus and hardness values of fused quartz measured were the same as those reported in the literature within two percent of error. Mechanical properties of ITO thin film were characterized in a depth range of 15∼200nm. As indentation depth increased, elastic modulus and hardness decreased by substrate effect. Ion beam deposited DLC thin films were indented in a depth range of 40∼50 nm. The results showed that the DLC thin film using benzene and bias voltage 0∼-50 V has elastic modulus and hardness value of 132 and 18 GPa respectively. Pure DLC thin films showed roughnesses lower than 0.25 nm, but silicon-added DLC thin films showed much higher roughness values, and the wavy surface morphology.

충격파 풍동에서의 자유 낙하 장치를 활용한 힘 측정 (Free-fall Force Measurement in a Shock Tunnel)

  • 박진우;장원근;박기수
    • 한국항공우주학회지
    • /
    • 제44권6호
    • /
    • pp.463-467
    • /
    • 2016
  • 본 연구에서는 충격파 풍동을 이용하여 초음속 환경에서 사람 모델이 받는 압력과 가속도를 측정하였다. 전자석과 철가루가 내포되어 있는 3차원 사람 모델을 이용하여 모델 지지대로 인한 유동 흐름의 방해가 없는 자유 낙하 기법을 사용하였다. 마하 4 유동조건에 서 자유 낙하 실험을 수행하였으며, 실험을 통해 획득한 유동 가시화 이미지로 시간에 따른 사람 모델의 위치 변화를 파악하고 이를 통해 모델에 가해진 힘을 측정하였다.

토목섬유 interface의 변형율 연화 모델 개발 (Development of Strain-softening Modeling for Interfaces between Geosynthetics)

  • 서민우;박준범;박인준;조남준
    • 한국지반신소재학회논문집
    • /
    • 제2권1호
    • /
    • pp.57-68
    • /
    • 2003
  • Strain-softening model is developed to characterize the interface behavior of geomembrane with geotextile and geosynthetic clay liner(GCL). The model proposed in this research is calibrated by using data from direct shear tests conducted on smooth and textured geomembrane. The research is divided into two regions, pre-peak and post-peak, to take into account of strain-softening effect. Although slight difference between measured and back calculated data is observed under high normal stress, good agreements, in general, are found from back calculations. Especially, good consistency is observed in the case of low normal stress. Based on the results, it can be concluded that the proposed model can be a reasonable constitutive law to figure out the behavior of strain-softening between interfaces of geomembrane. In addition, DSC(Disturbed State Concept) model is also presented for further application in geosynthetic interfaces.

  • PDF

두개안면복합체에서 Face Mask의 견인방향에 따른 생역학적 연구 : 유한요소법 연구 (Biomechanical Effects of Facial Mask according to Direction of Forces on the Craniofacial Complex : A Finite Element Study)

  • 현하영;차경석;정동화
    • 구강회복응용과학지
    • /
    • 제23권4호
    • /
    • pp.359-371
    • /
    • 2007
  • Recently, many studies were reported accurate analysis of facemask effect due to the development of the personal computers and computer programs. The aim of this study is appropriate protraction direction of facemask using finite element study with computer aided design and computer aided measurement. The construction of the three dimensional FEM was based on the computer tomography(CT) scans of 13.5 year-old male subject. Protraction force of 500 mg was applied at 0, 30, 60 and 90 degrees downwards to the Frankfort horizontal plane, and maxillary displacement and stress distribution were measured. When 60 degree force was applied, it showed forward movement of premolar roots area and downward movement of anterior nasomaxillary area, and others showed clockwise rotation movement of the nasomaxillary complex. Finally, we can produce the protraction of maxillary bone without rotation of maxilla about 60 degrees.