• 제목/요약/키워드: measured displacement

Search Result 1,719, Processing Time 0.033 seconds

Radial displacement of clinical target volume in node negative head and neck cancer

  • Jeon, Wan;Wu, Hong-Gyun;Song, Sang-Hyuk;Kim, Jung-In
    • Radiation Oncology Journal
    • /
    • v.30 no.1
    • /
    • pp.36-42
    • /
    • 2012
  • Purpose: To evaluate the radial displacement of clinical target volume in the patients with node negative head and neck (H&N) cancer and to quantify the relative positional changes compared to that of normal healthy volunteers. Materials and Methods: Three node-negative H&N cancer patients and five healthy volunteers were enrolled in this study. For setup accuracy, neck thermoplastic masks and laser alignment were used in each of the acquired computed tomography (CT) images. Both groups had total three sequential CT images in every two weeks. The lymph node (LN) level of the neck was delineated based on the Radiation Therapy Oncology Group (RTOG) consensus guideline by one physician. We use the second cervical vertebra body as a reference point to match each CT image set. Each of the sequential CT images and delineated neck LN levels were fused with the primary image, then maximal radial displacement was measured at 1.5 cm intervals from skull base (SB) to caudal margin of LN level V, and the volume differences at each node level were quantified. Results: The mean radial displacements were 2.26 (${\pm}1.03$) mm in the control group and 3.05 (${\pm}1.97$) in the H&N cancer patients. There was a statistically significant difference between the groups in terms of the mean radial displacement (p = 0.03). In addition, the mean radial displacement increased with the distance from SB. As for the mean volume differences, there was no statistical significance between the two groups. Conclusion: This study suggests that a more generous radial margin should be applied to the lower part of the neck LN for better clinical target coverage and dose delivery.

Measurement of Absolute Displacement-Amplitude of Ultrasonic Wave Using Piezo-Electric Detection Method (압전형 수신 기법을 이용한 초음파 절대변위진폭 측정)

  • Park, Seong-Hyun;Kim, Jongbeom;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • A nonlinear ultrasonic parameter is defined by the ratio of displacement amplitude of the fundamental frequency component to that of the second-order harmonic frequency component. In this study, the ultrasonic displacement amplitude of an SUS316 specimen was measured via a piezo-electric-based method to identify the validity of piezo-electric detection method. For comparison, the ultrasonic displacement was also determined via a laser-based Fabry-Pérot interferometer. The experimental results for both measurements were in good agreement. Additionally, the stability of the repeated test results from the piezo-electric method exceeded that of the laser-interferometric method. This result indicated that the piezo-electric detection method can be utilized to measure a nonlinear ultrasonic parameter due to its excellent stability although it involves a complicated process.

The effects of alveolar bone loss and miniscrew position on initial tooth displacement during intrusion of the maxillary anterior teeth: Finite element analysis

  • Cho, Sun-Mi;Choi, Sung-Hwan;Sung, Sang-Jin;Yu, Hyung-Seog;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.46 no.5
    • /
    • pp.310-322
    • /
    • 2016
  • Objective: The aim of this study was to determine the optimal loading conditions for pure intrusion of the six maxillary anterior teeth with miniscrews according to alveolar bone loss. Methods: A three-dimensional finite element model was created for a segment of the six anterior teeth, and the positions of the miniscrews and hooks were varied after setting the alveolar bone loss to 0, 2, or 4 mm. Under 100 g of intrusive force, initial displacement of the individual teeth in three directions and the degree of labial tilting were measured. Results: The degree of labial tilting increased with reduced alveolar bone height under the same load. When a miniscrew was inserted between the two central incisors, the amounts of medial-lateral and anterior-posterior displacement of the central incisor were significantly greater than in the other conditions. When the miniscrews were inserted distally to the canines and an intrusion force was applied distal to the lateral incisors, the degree of labial tilting and the amounts of displacement of the six anterior teeth were the lowest, and the maximum von Mises stress was distributed evenly across all the teeth, regardless of the bone loss. Conclusions: Initial tooth displacement similar to pure intrusion of the six maxillary anterior teeth was induced when miniscrews were inserted distal to the maxillary canines and an intrusion force was applied distal to the lateral incisors. In this condition, the maximum von Mises stresses were relatively evenly distributed across all the teeth, regardless of the bone loss.

Study on the Dynamic Stress-Strain Behavior of Solid Propellant Using Low-Velocity Impact Test (저속충격시험을 이용한 고체추진제의 동적 응력-변형률 특성 연구)

  • Hwang, Jae-Min;Go, Eun-Su;Jo, Hyun-Jun;Kim, In-Gul;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.813-820
    • /
    • 2021
  • In this study, a low-velocity impact test was performed to obtain the dynamic properties of solid propellants. The dynamic behavior of the solid propellant was examined by measuring the force and displacement of the impactor during the low-velocity impact test. The bending displacement was calculated by compensating for the local displacement caused by the low-velocity impact test in the form of three point bending and the shear displacement caused by using a short and thick solid propellant specimen. Stress and strain were calculated using compensated displacements and measured force, and dynamic properties of solid propellants were obtained from the stress-strain curve and compared with static bending test. The dynamic properties of solid propellant under the low-velocity impact loading at various operating temperature conditions such as room temperature(20 ℃), high temperature(63 ℃), and low temperature(-32 ℃) were compared and investigated.

Characterization of stacked geotextile tube structure using digital image correlation

  • Dong-Ju Kim;Dong Geon Son;Jong-Sub Lee;Thomas H.-K. Kang;Tae Sup Yun;Yong-Hoon Byun
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.385-394
    • /
    • 2023
  • Displacement is an important element for evaluating the stability and failure mechanism of hydraulic structures. Digital image correlation (DIC) is a useful technique to measure a three-dimensional displacement field using two cameras without any contact with test material. The objective of this study is to evaluate the behavior of stacked geotextile tubes using the DIC technique. Geotextile tubes are stacked to build a small-scale temporary dam model to exclude water from a specific area. The horizontal and vertical displacements of four stacked geotextile tubes are monitored using a dual camera system according to the upstream water level. The geotextile tubes are prepared with two different fill materials. For each dam model, the interface layers between upper and lower geotextile tubes are either unreinforced or reinforced with a cementitious binder. The displacement of stacked geotextile tubes is measured to analyze the behavior of geotextile tubes. Experimental results show that as upstream water level increases, horizontal and vertical displacements at each layer of geotextile tubes initially increase with water level, and then remain almost constant until the subsequent water level. The displacement of stacked geotextile tubes depends on the type of fill material and interfacial reinforcement with a cementitious binder. Thus, the proposed DIC technique can be effectively used to evaluate the behavior of a hydraulic structure, which consists of geotextile tubes.

Lateral Earth Pressures Acting on Anchored Retention Walls for Underground Excavation (지하굴착시 앵커지지 흙막이벽에 작용하는 측방토압)

  • 홍원표;윤중만
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.63-78
    • /
    • 1995
  • Recently, in order to utilize more effectively underground space, deep excavations have been performed on building or subway construction in urban areas. In such excavations, anchors have been used to support the excavation retaining walls because the anchored excavation could provide wide working space for underground construction. The purpose of this paper is to establish empirical equations to be able to estimate the earth pressures acting on anchored excavation retention walls, based on the investigation of field measuring results, which were obtained from twenty seven building construction sites. The prestressed anchor force was measured by load cells which were attached to the anchor head, while the horizontal displacement of excavation walls were measured by inclinometers which were installed right'behind the retention walls. The lateral earth pressures acting on the anchored retention walls, which were estimated from both the measured anchor forces and the horizontal displacement of the walls, showed a trapezoidal distribution. There was some difference between the measured earth pressures acting on the anchored retention walls and the empirical earth pressures given by several empirical equations. Thus, the lateral earth pressures acting on anchored retention walls would be estimated by these empirical equations with some modifications.

  • PDF

Experimental Investigations on the Characteristics of Explosion Mitigations by Different Concentrations of Agar Gel Barriers (Agar Gel Barrier의 농도변화에 따른 폭발완화 특성에 관한 실험적 연구)

  • Park, Dal-Jae;Kim, Nam-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.13-18
    • /
    • 2011
  • Experimental studies were carried out to investigate the characteristics of explosion mitigations by varying concentrations of agar gel barriers in an explosion chamber, 1400 mm in length, with a square cross-section of $100{\times}100mm^2$. Another extension chamber, $100{\times}100{\times}300mm^3$, was made to hold a gel barrier. Four different gel concentrations were used in the measurements: 2, 3, 4, 5 %(by weight of gel). Displacement of the gel barrier was measured using a high speed camera, and pressure development was measured using pressure transducers and a data acquisition system. It was found that as the concentrations of the gel barriers increased, the gel rupture time and the time taken to reach the maximum pressure increased. It was also found that the increment of gel concentrations increased the reduction percentage in the maximum pressure between before and after gel barrier.

Study on the Development of the Digital Image Correlation Measurements Program for Measuring the 3-Point Bending Test (이미지 상관법을 이용한 3 점 굽힘 시험 계측 프로그램 개발 관한 연구)

  • Choi, In Young;Kang, Young June;Hong, Kyung Min;Ko, Kwang Su;Kim, Sung Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.889-895
    • /
    • 2014
  • Machine parts and structures of a change in the displacement and strain can be evaluated safety is one of the important factors. Typically the strain gauge has been employed to measure the displacement and strain. However, this contact-type measurement method has disadvantages that are not measured under condition of specific object shape, surface roughness and temperature. In particularly, 3 point bending and 4 point bending test not use strain gauge. So its test used cross head displacement and deflect meter. Digital Image Correlation measurement methods have many advantages. It is non contact-type measurement method to measure the object displacements and strain. In addition, it is possible to measure the Map of full field displacements and strain. In this paper, measured the 3 point bending deflection using the Digital Image Correlation methods. In order to secure the reliability, Digital Image Correlation method and universal test machine were compared.

Characteristics of the Cyclic Hardening in Low Cycle Environmental Fatigue Test of CF8M Stainless Steel (CF8M 스테인리스 강 저주기 환경피로 실험의 주기적 변형률 경화 특성)

  • Jeong, Ill-Seok;Ha, Gak-Hyun;Kim, Tae-Ryong;Jeon, Hyun-Ik;Kim, Yeong-Sin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.17-22
    • /
    • 2007
  • Low-cycle environmental fatigue tests of cast austenitic stainless steel CF8M at the condition of fatigue strain rate 0.04%/sec were conducted at the pressure and temperature, 15MPa, $315^{\circ}C$ of a operating pressurized water reactor. The used test rig was limited to install an extensometer at the gauge length of the cylindrical fatigue specimen inside the small autoclave. So the magnet type LVDT's were used to measure the fatigue displacement at the specimen shoulders inside the high temperature and high pressure water autoclave. However, the displacement and strain measured at the specimen shoulders is different from the one at the gauge length for the geometry and the cyclic strain hardening effect. FEM calculated the displacement and the strain of the gauge length from the data measured at the shoulders. Tensile test properties in elastic and plastic behavior of CF8M material were used in the FEM analysis. A series of low cycle fatigue tests simulating the cyclic strain hardening effect verified that the FEM calculation was well agreed with the simulated tests. The process and method developed in this study would be so useful to produce reliable environmental fatigue curves of CF8M stainless steel in pressurized water reactors.

  • PDF

Construction Monitoring Methods of FCM Bridge Using Temperature Data (온도데이터를 활용한 현장타설 캔틸레버 교량의 시공 중 계측)

  • Kim, Hyun-Joong;Moon, Dae Joong;Nam, Soon Sung;Jeong, Ju Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.219-227
    • /
    • 2016
  • In this study, we have proposed a method of monitoring of bridges under construction in view of the long-term behavior of the prestress concrete bridge of which the Free Cantilever Method is applied. As a method to confirm the ability of the long-term behavior of the concrete box girder, temperature sensors and strain gauges were installed, and the measured data was used to calculate creep coefficient. Moreover, we have measured the stress of the concrete box girder during construction which was applied with creep coefficient and compared with the changes in temperature to analyze the vertical displacement along the segment. In conclusion, monitoring of the FCM bridge during construction in consideration of the long-term behavior can be analyzed efficiently by suing temperature and displacement data without the use of laser displacement meter or laser delfectometer.