• Title/Summary/Keyword: measured displacement

Search Result 1,719, Processing Time 0.025 seconds

Vision-based support in the characterization of superelastic U-shaped SMA elements

  • Casciati, F.;Casciati, S.;Colnaghi, A.;Faravelli, L.;Rosadini, L.;Zhu, S.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.641-648
    • /
    • 2019
  • The authors investigate the feasibility of applying a vision-based displacement-measurement technique in the characterization of a SMA damper recently introduced in the literature. The experimental campaign tests a steel frame on a uni-axial shaking table driven by sinusoidal signals in the frequency range from 1Hz to 5Hz. Three different cameras are used to collect the images, namely an industrial camera and two commercial smartphones. The achieved results are compared. The camera showing the better performance is then used to test the same frame after its base isolation. U-shaped, shape-memory-alloy (SMA) elements are installed as dampers at the isolation level. The accelerations of the shaking table and those of the frame basement are measured by accelerometers. A system of markers is glued on these system components, as well as along the U-shaped elements serving as dampers. The different phases of the test are discussed, in the attempt to obtain as much possible information on the behavior of the SMA elements. Several tests were carried out until the thinner U-shaped element went to failure.

Shape sensing with inverse finite element method for slender structures

  • Savino, Pierclaudio;Gherlone, Marco;Tondolo, Francesco
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.217-227
    • /
    • 2019
  • The methodology known as "shape sensing" allows the reconstruction of the displacement field of a structure starting from strain measurements, with considerable implications for structural monitoring, as well as for the control and implementation of smart structures. An approach to shape sensing is based on the inverse Finite Element Method (iFEM) that uses a variational principle enforcing a least-squares compatibility between measured and analytical strain measures. The structural response is reconstructed without the knowledge of the mechanical properties and load conditions but based only on the relationship between displacements and strains. In order to efficiently apply iFEM to the most common structural typologies of civil engineering, its formulation according to the kinematical assumptions of the Bernoulli-Euler theory is presented. Two beam inverse finite elements are formulated for different loading conditions. Depending on the type of element, the relationship between the minimum number of required measurement stations and the interpolation order is defined. Several examples representing common applications of civil engineering and involving beams and frames are presented. To simulate the experimental strain data at the station points and to verify the accuracy of the displacements obtained with the iFEM shape sensing procedure, a direct FEM analysis of the considered structures is performed using the LUSAS software.

Experimental investigation of deformation behavior of geocell retaining walls

  • Altay, Gokhan;Kayadelen, Cafer;Canakci, Hanifi;Bagriacik, Baki;Ok, Bahadir;Oguzhanoglu, Muhammed Ahmet
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.419-431
    • /
    • 2021
  • Construction of retaining walls with geocell has been gaining in popularity because of its easy and fast installation compared to conventional methods. In this study, model tests were conducted by constructing the geocell retaining wall (GRW) at a constant height (i.e., 90 cm) and using aggregate as an infill material at four different configurations and two different surface angles. In these tests, a circular footing was placed behind the walls at different lateral distances from the wall surface and loaded monotonically. Subsequent to this vertical loading being applied to the footing, horizontal displacements on the GRW surface were measured at three different points. The performance of Type 4 GRW exceeded the other three types of GRW, with the highest lateral displacement occurring in Type 4 GRW at approximately 0.67 % of wall height. In addition, the results of these tests were compared with theoretical approaches widely accepted in the literature. The stress levels reached beneath the footing were found to be compatible with theoretical results.

Seismic demand assessment of semi-rigid steel frames at different performance points

  • Sharma, Vijay;Shrimali, Mahendra K.;Bharti, Shiv D.;Datta, Tushar K.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.713-730
    • /
    • 2021
  • The seismic performance of rigid steel frames is widely investigated, but that of semi-rigid (SR) steel frames are not studied extensively, especially for near-field earthquakes. In this paper, the performances of five and ten-story steel SR frames having different degrees of semi-rigidity are evaluated at four performance points in the four different deformation states, namely, the elastic, elasto-plastic, plastic, and near collapse states. The performances of the SR frames are measured by the response parameters including the maximum values of the top floor displacement, base shear, inter-story drift ratio, number of plastic hinges, and SRSS of plastic hinge rotations. These response parameters are obtained by the capacity spectrum method (CSM) using pushover analysis. The validity of the response parameters determined by the CSM is evaluated by the results of the nonlinear time history analysis (NLTHA) for both near and far-field earthquakes at different PGA levels, which are consistent with the performance points. Results of the study show that the plastic hinges of SR frame significantly increase in the range of plastic to near-collapse states for both near and far-field earthquakes. The effect of the degree of semi-rigidity is pronounced only at higher degrees of semi-rigidity. The predictions of the CSM are fairly well in comparison to the NLTHA.

Experimental and Theoretical Study on the Prediction of Axial Stiffness of Subsea Power Cables

  • Nam, Woongshik;Chae, Kwangsu;Lim, Youngseok
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.243-250
    • /
    • 2022
  • Subsea power cables are subjected to various external loads induced by environmental and mechanical factors during manufacturing, shipping, and installation. Therefore, the prediction of the structural strength is essential. In this study, experimental and theoretical analyses were performed to investigate the axial stiffness of subsea power cables. A uniaxial tensile test of a 6.5 m three-core AC inter-array subsea power cable was carried out using a 10 MN hydraulic actuator. In addition, the resultant force was measured as a function of displacement. The theoretical model proposed by Witz and Tan (1992) was used to numerically predict the axial stiffness of the specimen. The Newton-Raphson method was employed to solve the governing equation in the theoretical analysis. A comparison of the experimental and theoretical results for axial stiffness revealed satisfactory agreement. In addition, the predicted axial stiffness was linear notwithstanding the nonlinear geometry of the subsea power cable or the nonlinearity of the governing equation. The feasibility of both experimental and theoretical framework for predicting the axial stiffness of subsea power cables was validated. Nevertheless, the need for further numerical study using the finite element method to validate the framework is acknowledged.

A study on the Large High Speed Press Plunger Structure and Dynamic Bottom Dead Center Displacement (대형 고속프레스 플런저 구조와 동적 하사점 변위량에 대한 연구)

  • Seung-Soo Kim;Chun-Kyu Lee
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.40-45
    • /
    • 2022
  • The EV electric vehicle market is growing rapidly worldwide. An electric vehicle means a vehicle that uses energy charged through an electricity source as power. The precision of the press is important to mass-produce the drive motor, which is a key component of the electric vehicle. The size of the driving motor is increasing, and The size of the mold is also growing. In this study, the precision of large high-speed presses for mass production of driving motors was measured. A study was conducted on the measurement method of press and the analysis of measurement data. A drive motor is a component that transmits power by converting electrical energy into kinetic energy. EV driven motors have key material properties to improve efficiency. The material properties are the thickness of the material. As a method for improving performance, use a 0.2mm thin steel sheet. Mold is also becoming larger. As the mold grows, the size of the high-speed press for mass production of the driving motor is also increasing. Also, the precision of the press is the most important because it uses a thin iron plate material. So the importance of large press precision is being emphasized. In this study, the effect of large high-speed press structure on precision was verified

Effect of Rock Mass Properties on Coupled Thermo-Hydro-Mechanical Responses at Near-Field Rock Mass in a Heater Test - A Benchmark Sensitivity Study of the Kamaishi Mine Experiment in Japan

  • Hwajung Yoo;Jeonghwan Yoon;Ki-Bok Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.23-41
    • /
    • 2023
  • Coupled thermo-hydraulic-mechanical (THM) processes are essential for the long-term performance of deep geological disposal of high-level radioactive waste. In this study, a numerical sensitivity analysis was performed to analyze the effect of rock properties on THM responses after the execution of the heater test at the Kamaishi mine in Japan. The TOUGH-FLAC simulator was applied for the numerical simulation assuming a continuum model for coupled THM analysis. The rock properties included in the sensitivity study were the Young's modulus, permeability, thermal conductivity, and thermal expansion coefficients of crystalline rock, rock salt, and clay. The responses, i.e., temperature, water content, displacement, and stress, were measured at monitoring points in the buffer and near-field rock mass during the simulations. The thermal conductivity had an overarching impact on THM responses. The influence of Young's modulus was evident in the mechanical behavior, whereas that of permeability was noticed through the change in the temperature and water content. The difference in the THM responses of the three rock type models implies the importance of the appropriate characterization of rock mass properties with regard to the performance assessment of the deep geological disposal of high-level radioactive waste.

Analysis of Laterally Loaded Piles Using Soil Resistance of Wedge Failure Mode (Wedge Failure Mode 형태의 반력을 이용한 수평재하 말뚝의 거동 분석)

  • Kim, Young-Ho;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.59-72
    • /
    • 2009
  • The load distribution and deflection of offshore piles are investigated by lateral load-transfer curve method (p-y curve). Special attention is given to the soil-pile interaction and soil resistance of 3D wedge failure mode. A framework for determining a hyperbolic p-y curve is proposed based on theoretical analysis and experimental load test results. The methods for determining appropriate material parameters needed for constructing the proposed p-y curves are presented in this paper. Through comparisons with field case studies, it was found that the proposed method in the present study estimates reasonably the load transfer behavior of pile, and thus, the computed pile responses, such as bending moment and lateral displacement, agree well with the actual measured responses.

Fabrication of composite hinge mechanism for flapping-wing motion of micro air vehicle (초소형 날갯짓 비행운동을 위한 복합재료 힌지 메커니즘 제작)

  • Kang, Lae-Hyong;Jang, Hee-Suk;Leem, Ju-Young;Han, Jae-Hung
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.7-12
    • /
    • 2009
  • This paper deals with a fabrication method of composite hinge mechanisms for flapping-wing micro air vehicles. The fabrication process includes curing process of Graphite/Epoxyprepregs, laser cutting for high fabrication repeatability, laminating of Graphite/Epoxy prepregs with Kapton film which is used for flexure, and so on. The fabricated hinge mechanism was attached with PUMPS actuators and the measured flapping angle was $173^{\circ}$ when driving voltage was 300V 170Hz.

A model-based adaptive control method for real-time hybrid simulation

  • Xizhan Ning;Wei Huang;Guoshan Xu;Zhen Wang;Lichang Zheng
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.437-454
    • /
    • 2023
  • Real-time hybrid simulation (RTHS), which has the advantages of a substructure pseudo-dynamic test, is widely used to investigate the rate-dependent mechanical response of structures under earthquake excitation. However, time delay in RTHS can cause inaccurate results and experimental instabilities. Thus, this study proposes a model-based adaptive control strategy using a Kalman filter (KF) to minimize the time delay and improve RTHS stability and accuracy. In this method, the adaptive control strategy consists of three parts-a feedforward controller based on the discrete inverse model of a servohydraulic actuator and physical specimen, a parameter estimator using the KF, and a feedback controller. The KF with the feedforward controller can significantly reduce the variable time delay due to its fast convergence and high sensitivity to the error between the desired displacement and the measured one. The feedback control can remedy the residual time delay and minimize the method's dependence on the inverse model, thereby improving the robustness of the proposed control method. The tracking performance and parametric studies are conducted using the benchmark problem in RTHS. The results reveal that better tracking performance can be obtained, and the KF's initial settings have limited influence on the proposed strategy. Virtual RTHSs are conducted with linear and nonlinear physical substructures, respectively, and the results indicate brilliant tracking performance and superb robustness of the proposed method.