Browse > Article
http://dx.doi.org/10.12989/gae.2021.27.5.419

Experimental investigation of deformation behavior of geocell retaining walls  

Altay, Gokhan (Department of Civil Engineering, Osmaniye Korkut Ata University, Karacaoglan Campus)
Kayadelen, Cafer (Department of Civil Engineering, Osmaniye Korkut Ata University, Karacaoglan Campus)
Canakci, Hanifi (Department of Civil Engineering, Hasan Kalyoncu University)
Bagriacik, Baki (Department of Civil Engineering, Cukurova University, Balcali Campus Saricam/Adana)
Ok, Bahadir (Department of Civil Engineering, Adana Alparslan Turkes Science and Technology University)
Oguzhanoglu, Muhammed Ahmet (Department of Civil Engineering, Osmaniye Korkut Ata University, Karacaoglan Campus)
Publication Information
Geomechanics and Engineering / v.27, no.5, 2021 , pp. 419-431 More about this Journal
Abstract
Construction of retaining walls with geocell has been gaining in popularity because of its easy and fast installation compared to conventional methods. In this study, model tests were conducted by constructing the geocell retaining wall (GRW) at a constant height (i.e., 90 cm) and using aggregate as an infill material at four different configurations and two different surface angles. In these tests, a circular footing was placed behind the walls at different lateral distances from the wall surface and loaded monotonically. Subsequent to this vertical loading being applied to the footing, horizontal displacements on the GRW surface were measured at three different points. The performance of Type 4 GRW exceeded the other three types of GRW, with the highest lateral displacement occurring in Type 4 GRW at approximately 0.67 % of wall height. In addition, the results of these tests were compared with theoretical approaches widely accepted in the literature. The stress levels reached beneath the footing were found to be compatible with theoretical results.
Keywords
geocell; granular soil; model test; monotonic loading; retaining walls;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kayadelen, C., Onal, T.O. and Altay, G. (2018), "Experimental study on pull-out response of geogrid embedded in sand", Measurement, 117, 390-396. https://doi.org/10.1016/j.measurement.2017.12.024.   DOI
2 Song, F., Jin, Y., Liu, H. and Liu, J. (2020), "Analyzing the deformation and failure of geosynthetic-encased granular soil in the triaxial stress condition", Geotextile Geomembr., 48(6), 886-896. https://doi.org/10.1016/j.geotexmem.2020.06.007.   DOI
3 Hegde, A.M. and Sitharam, T.G. (2015), "Three-dimensional numerical analysis of geocell-reinforced soft clay beds by considering the actual geometry of geocell pockets", Canadian Geotech. J., 52(9), 1396-1407. https://doi.org/10.1139/cgj-2014-0387.   DOI
4 Song, F., Xie, Y.L., Yang, Y.F. and Yang, X.H. (2014), "Analysis of failure of flexible Geocell reinforced retaining walls", Geosynth. Int., 21(6), 342-351. https://doi.org/10.1680/gein.14.00022.   DOI
5 Song, F., Liu, H., Ma, L. and Hu, H. (2018b), "Numerical analysis of geocell-reinforced retaining wall failure modes", Geotextile Geomembr., 46(3), 284-296. https://doi.org/10.1016/j.geotexmem.2018.01.004.   DOI
6 Chen, R.H. and Chiu, Y.M. (2007), "Model tests of geocell retaining structure", Geotextile Geomembr., 26(1), 56-70. https://doi.org/10.1016/j.geotexmem.2007.03.001.   DOI
7 Allen, T.M. and Bathurst, R.J. (2014), "Performance of an 11 m high block-faced geogrid wall designed using the K-stiffness method", Canadian Geotech. J., 51(1), 16-29. https://doi.org/10.1139/cgj-2013-0261.   DOI
8 Khorsandiardebili, N. and Ghazavi, M. (2021), "Static stability analysis of geocell-reinforced slopes", Geotextile Geomembr., 49(3), 852-863. https://doi.org/10.1016/j.geotexmem.2020.12.012.   DOI
9 Song, F., Liu, H., Hu, H. and Xie, Y. (2018a), "Centrifuge tests of geocell-reinforced retaining walls at limit equilibrium", J. Geotech. Geoenviron. Eng., 144(3), 04018005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001849.   DOI
10 Song, F., Liu, H., Yang, B. and Zhao, J. (2019), "Large-scale triaxial compression tests of geocell-reinforced sand", Geosynth. Int., 26(4), 388-395. https://doi.org/10.1680/jgein.19.00019.   DOI
11 Tafreshi M., Shaghaghi T., Gh Mehrjardi T., Dawson A.R. and Ghadrdan, M. (2015), "A Simplified Method for Predicting the Settlement of Circular Footings on Multi-Layered geocell-reinforced non-cohesive soils", Geotextile Geomembr., 43(4), 332-344. https://doi.org/10.1016/j.geotexmem.2015.04.006.   DOI
12 Liu, S.Y., Han, J., Zhang, D.W. and Hong, Z.S. (2008), "A combined DJM-PVD method for soft ground improvement", Geosynth. Int., 15(1), 43-54. https://doi.org/10.1680/gein.2008.15.1.43.   DOI
13 Demir, A. and Sarici, T. (2017), "Bearing capacity of footing supported by geogrid encased stone columns on soft soil", Geomech. Eng., 12(3), 417-439. https://doi.org/10.12989/gae.2017.12.3.417.   DOI
14 Dong, Y.L., Han, J. and Bai, X.H. (2011), "Numerical analysis of tensile behavior of geogrids with rectangular and triangular apertures", Geotextile Geomembr., 29(2), 83-91. https://doi.org/10.1016/j.geotexmem.2010.10.007.   DOI
15 Khoury, C.N., Miller, G.A. and Hatami, K. (2011), "Unsaturated soil-geotextile interface behavior", Geotextile Geomembr., 29(1), 17-28. https://doi.org/10.1016/j.geotexmem.2010.06.009.   DOI
16 Kumar, A., Singh, A.P. and Chatterjee, K. (2019), "Ground improvement using geocells to enhance trafficability in desert soils", Geomech. Eng., 19(1), 71-78. https://doi.org/10.12989/gae.2019.19.1.071.   DOI
17 Leshchinsky, B. and Ling, H. (2013), "Effects of Geocell confinement on strength and deformation behavior of gravel", J. Geotech. Geoenviron. Eng., 139(2), 340-352. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000757.   DOI
18 Mehrjardi, G.T., Behrad R. and Moghaddas Tafreshi, S.N. (2019), "Scale effect on the behavior of geocell-reinforced soil", Geotextile Geomembr., 47(2), 154-163. https://doi.org/10.1016/j.geotexmem.2018.12.003.   DOI
19 Mirzaalimohammadi, A., Ghazavi, M., Roustaei, M. and Lajevardi, S.H. (2019), "Pullout response of strengthened geosynthetic interacting with fine sand", Geotextile Geomembr., 47(4), 530-541. https://doi.org/10.1016/j.geotexmem.2019.02.006.   DOI
20 Altay, G., Kayadelen, C., Taskiran, T., Bagriacik, B. and Toprak, O. (2021), "Frictional properties between geocells filled with granular material", Revista de la construccion, 20(2), 332-345. http://dx.doi.org/10.7764/rdlc.20.2.332.   DOI
21 Anubhav and Basudhar, P.K. (2010), "Modeling of soil-woven geotextile interface behavior from direct shear test results", Geotextile Geomembr., 28(4), 403-408. https://doi.org/10.1016/j.geotexmem.2009.12.005.   DOI
22 Chen, R.H., Wu, C.P., Huang, F.C. and Shen, C.W. (2013), "Numerical Analysis of Geocell Reinforced Retaining Structure", Geotextile Geomembr., 39, 51-62. https://doi.org/10.1016/j.geotexmem.2013.07.003.   DOI
23 Cuelho, E., Perkins, S. and Morris, Z. (2014), "Relative operational performance of geosynthetic used as subgrade stabilization", FHWA/MT-14-002/7712-251, State of Montana Department of Transportation, Montana, USA.
24 Thakur, J., Han, J. and Parsons, R. (2017), "Factors influencing deformations of geocell reinforced recycled asphalt pavement bases under cyclic loading", J. Mater. Civil Eng., 29(3), 1-12. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001760.   DOI
25 Ferreira, F.B., Vieira, C.S. and Lopes, M.L. (2015), "Direct shear behavior of residual soil-geosynthetic interfaces - influence of soil moisture content, soil density and geosynthetic type", Geosynth. Int., 22(3), 257-272. https://doi.org/10.1680/gein.15.00011.   DOI
26 Davarci, B., Ornek, M. and Turedi, Y. (2014), "Model studies of multi-edge footings on geogrid-reinforced sand", European J. Environ. Civil Eng., 18(2), 190-205. https://doi.org/10.1080/19648189.2013.854726.   DOI
27 Gu, M., Collin, J.G., Han, J., Zhang, Z., Tanyu, B.F., Leshchinsky, D., Ling, H.I. and Rimoldi, P. (2017), "Numerical analysis of instrumented mechanically stabilized gabion walls with large vertical reinforcement spacing", Geotextile Geomembr., 45(4), 294-306. https://doi.org/10.1016/j.geotexmem.2017.04.002.   DOI
28 Meyerhof, G.G. (1963), "Some recent research on the bearing capacity of foundations", Canadian Geotech. J., 1(1), 16-26. https://doi.org/10.1139/t63-003.   DOI
29 Song, F., Liu, H., Chai, H. and Chen, J. (2017), "Stability analysis of geocell-reinforced retaining walls", Geosynth. Int., 24(5), 442-450. https://doi.org/10.1680/jgein.17.00013.   DOI
30 Mehrjardi, G.T., Tafreshi, S.M. and Dawson, A.R. (2012), "Combined use of Geocell reinforcement and rubber-soil mixtures to improve performance of buried pipes", Geotextile Geomembr., 34, 116-130. https://doi.org/10.1016/j.geotexmem.2012.05.004.   DOI
31 Xiao, C., Han, J. and Zhang, Z. (2015), "Experimental study on performance of geosynthetic-reinforced soil model walls on rigid foundations subjected to static footing load", Geotextile Geomembr., 44(1), 81-94. https://doi.org/10.1016/j.geotexmem.2015.06.001.   DOI
32 Pinto, M., Isabel, M. and Cousens, T.W. (1996), "Geotextile reinforced brick facing retaining walls", Geotextile Geomembr., 14(9), 449-464. https://doi.org/10.1016/S0266-1144(96)00037-4.   DOI
33 Altay, G., Kayadelen, C., Taskiran T. and Kaya Y.Z.A. (2019), "A laboratory study on pull-out resistance of geogrid in clay soil", Measurement, 139, 301-307. https://doi.org/10.1016/j.measurement.2019.02.065.   DOI
34 Gomez, D., Caicedo, B. and Estrada, N. (2014), "Centrifuge modelling tests of geocell gravity retaining structures". 8th International Conference on Physical Modeling in Geotechnics (ICPMG), Perth, January.
35 Gongora, I.A.M.G. and Palmeira, E.M. (2016), "Assessing the influence of some soil-reinforcement interaction parameters on the performance of a low fill on compressible subgrade. Part II: influence of surface maintenance", J. Geosynth. Ground Eng., 2(1), 18-29. https://doi.org/10.1007/s40891-015-0042-2.   DOI
36 Guo, J., Han, J., Schrock, S.D. and Parsons, R.L. (2015), "Field evaluation of vegetation growth in geocell-reinforced unpaved shoulders", Geotextile Geomembr., 43(5), 403-411. https://doi.org/10.1016/j.geotexmem.2015.04.013.   DOI
37 Han, J. and Leshchinsky, D. (2010), "Analysis of back-to-back mechanically stabilized earth walls", Geotextile Geomembr., 28(3), 262-267. https://doi.org/10.1016/j.geotexmem.2009.09.012.   DOI
38 Moradi, G., Abdolmaleki, A. and Soltani, P. (2019), "Small-and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method", Geomech. Eng., 18(3), 315-328. https://doi.org/10.12989/gae.2019.18.3.315.   DOI
39 Namjoo, A. M., Jafari, K. and Toufigh, V. (2020), "Effect of particle size of sand and surface properties of reinforcement on sand-geosynthetics and sand-carbon fiber polymer interface shear behavior", Transport. Geotech., 24, 100403. https://doi.org/10.1016/j.trgeo.2020.100403.   DOI
40 Satyal, S.R., Leshchinsky, B., Han, J. and Neupane, M. (2018). "Use of cellular confinement for improved railway performance on soft subgrades", Geotextile Geomembr., 46(2), 190-205. https://doi.org/10.1016/j.geotexmem.2017.11.006.   DOI
41 Shamsi, M., Ghanbari, A. and Nazariafshar, J. (2019), "Behavior of sand columns reinforced by vertical geotextile encasement and horizontal geotextile layers", Geomech. Eng., 19(4), 329-342. https://doi.org/10.12989/gae.2019.19.4.329.   DOI
42 Shen, C.W. (2005), "The mechanical characteristics of geocell-reinforced earth", M.Sc. Dissertation, National Taiwan University, China.
43 Song, F. and Tian, Y. (2019), "Three-dimensional numerical modelling of geocell reinforced soils and its practical application", Geomech. Eng., 17(1), 1-9. https://doi.org/10.12989/gae.2019.17.1.001.   DOI
44 Soylemez, M. and Arslan, S. (2020). "Experimental investigation of influence of clay in soil on interface friction between geotextile and clayey soil", Arabian J. Geosci., 13(10), 1-8. https://doi.org/10.1007/s12517-020-05339-1.   DOI
45 Moghaddas Tafreshi, S.N. and Dawson, A.R. (2010), "Comparison of bearing capacity of a strip footing on sand with geocell and with planar forms of geotextile reinforcement", Geotextile Geomembr., 28(1), 72-84. https://doi.org/10.1016/j.geotexmem.2009.09.003.   DOI
46 Cure, E., Sadoglu, E., Turker, E. and Uzuner, B.A. (2014), "Decrease trends of ultimate loads of eccentrically loaded model strip footings close to a slope", Geomech. Eng., 6(5), 469-485. http://dx.doi.org/10.12989/gae.2014.6.5.469.   DOI
47 Dal, K., Cansiz, O.F., Ornek, M. and Turedi, Y. (2019), "Prediction of footing settlements with geogrid reinforcement and eccentricity", Geosynth. Int., 26(3), 297-308. https://doi.org/10.1680/jgein.19.00008.   DOI
48 Das, B.M. and Sobhan, K. (2010), Principles of Geotechnical Engineering, (8th edition), Cengage Learning, MI, USA.
49 Dash, S.K., Rajagopal, K. and Krishnaswamy, N.R. (2007), "Behavior of geocell reinforced sand beds under strip loading", Canadian Geotech. J., 44(7), 905-916. https://doi.org/10.1139/t07-035.   DOI
50 Huang, J. and Han, J. (2009), "3D coupled mechanical and hydraulic modeling of a geosynthetic-reinforced deep mixed column-supported embankment", Geotextile Geomembr., 27(4), 272-280. https://doi.org/10.1016/j.geotexmem.2009.01.001.   DOI
51 Kahyaoglu, M.R. and Sahin, M. (2021), "Model studies on polymer strip reinforced soil retaining walls", Geomech. Eng., 25(5), 357. http://dx.doi.org/10.12989/gae.2021.25.5.357.   DOI
52 Terzaghi, K. (1943), Theoretical Soil Mechanics, Wiley Publishing, New York, USA.
53 Thakur, J.K., Han, J., Pokharel, S.K. and Parsons, R.L. (2012), "Performance of geocell-reinforced recycled asphalt pavement (RAP) bases over weak subgrade under cyclic plate loading", Geotextile Geomembr., 35, 14-24. https://doi.org/10.1016/j.geotexmem.2012.06.004.   DOI
54 Zhang, J., Li, X., Ding, L. and Xiao, Y. (2021), "Reinforcement effect investigation of geogrids in the junction between new and existing subgrades in highway widening", J. Testing Evaluation, 50(5). https://doi.org/10.1520/JTE20210223.   DOI
55 Zhou, H.B. and Wen, X.J. (2008), "Model studies on geogrid- or geocell-reinforced sand mattress on soft soil", Geotextile Geomembr., 26(3), 231-238. https://doi.org/10.1016/j.geotexmem.2007.10.002.   DOI
56 Vieira, C.S., Lopes, M.L. and Caldeira, L.M. (2013), "Sand-geotextile interface characterization through monotonic and cyclic direct shear tests", Geosynth. Int., 20(1), 26-38. https://doi.org/10.1680/gein.12.00037.   DOI
57 Hussein, M.G. and Meguid, M.A. (2020), "Improved understanding of geogrid response to pullout loading: insights from three-dimensional finite-element analysis", Canadian Geotech. J., 57(2), 277-293. https://doi.org/10.1139/cgj-2018-0384.   DOI