
1. Introduction

Subsea power cables are exposed to a wide range of unforeseen 
external loads in the marine environment during installation and 
operation. There is an urgent need for a system capable of accurately 
analyzing and testing the mechanical strength of the cables to achieve 
their target service life, while withstanding the harsh marine 
environment. The mechanical properties of subsea power cables can 
be categorized into bending stiffness, tensile stiffness, and torsional 
stiffness. These properties are instrumental in determining their 
behavior.

The components of a typical subsea power cable include the 
following: a conductor for power transmission, insulation material for 
wrapping the conductor (cross-linked polyethylene: XLPE), lead 
sheath, sheath, fiber, armor wire, and yarn (polypropylene: PP) to 
protect the armor wire (See Fig. 1). Of these, the conductors and armor 
wires use metallic materials: copper or aluminum is mainly used for 
conductors, and carbon steel is used for armor wires. As described 
above, subsea power cables have composite hierarchical structures in 
which different materials are employed and multiple component layers 

with two types of structure (cylindrical and helical) are integrated in 
arbitrary sequences. Among the different component layers, the 
conductors and armor wires account for a significant proportion of the 
mechanical properties of subsea power cables. These components have 
a helical structure. Because these are twisted in a certain direction, the 
mechanical properties of the cable vary depending on the direction of 
rotation. In addition, it is difficult to predict the mechanical properties 
of the cables because these are significantly affected by the cross- 
sectional area, physical properties of the material, and pitch angle of 
the helical elements.

Fig. 1 Components of subsea power cables
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The mechanical properties of subsea power cables can be predicted 
based on experimental, theoretical, and numerical analysis using the 
finite element method (FEM). Lutchansky (1969) and Knapp (1979) 
proposed theoretical models for analyzing the stiffness and axial stress 
distribution of armor wires. In their research, bending, axial tensile, 
and torsional stiffness tests of subsea power cables were performed to 
investigate the correlation between the proposed equations and 
experimental results. Based on the research, subsequent studies on the 
mechanical properties of a range of subsea cables such as subsea 
power cables, umbilicals, and submarine pipelines were conducted 
through physical experiments and improved equations for the theory. 
Vaz et al. (1998), Coser et al. (2016), Ekeberg and Dhaigude (2016), 
Komperød et al. (2017), and Delizisis et al. (2021) investigated 
mechanical properties such as tensile stiffness and bending stiffness 
through experiments with full-scale subsea cables. Furthermore, Witz 
and Tan (1992), Huang and Vassalos (1993), Kebadze (2000), Skeie et 
al. (2012), and Komperød (2017) conducted studies on the analysis of 
the mechanical properties of subsea cables and prediction of the stress 
distribution in armor wires using numerical models, i.e., theoretical 
formulas. However, there has been limited research for verifying the 
validity of the proposed equations. Similar to the cases of other fields 
of research, the advancement in computer performance and the 
development of commercial software over the past decades have had a 
substantial impact on the research capabilities for analyzing the 
mechanical properties of subsea power cables. For example, the 
following are software programs specialized for the mechanical 
analysis of pipes and cables with composite hierarchical structures, 
such as subsea power cables: CableCAD; Helica; UFLEX; and 
commercial software based on the FEM, such as ABAQUS, 
COMSOL, and ANSYS. Shaw (2011), Lu et al. (2017), Tjahjanto et al. 
(2017), and Chang and Chen (2019) investigated the behavior of 
subsea cables by performing 3D finite element analysis. In addition, 
they compared the results of the numerical analysis with theoretical 
formulas or experimental results. Although these studies have 
demonstrated the effectiveness of numerical analysis based on FEM, 
numerical simulations using FEM incurs high computational cost.

In this study, experimental and theoretical analyses were performed 
to predict the axial stiffness of subsea power cables. Axial stiffness is a 
measure of the resistance to deformation along the longitudinal 
direction under an applied tension. In the experimental analysis, a 
uniaxial tensile test was performed on a 6.5 m three-core AC 
inter-array subsea power cable specimen by using a 10 MN hydraulic 

testing system. In the theoretical analysis, the axial stiffness of the 
subsea power cable specimen was predicted based on the theoretical 
framework presented by Witz and Tan (1992). Furthermore, the 
predicted results were compared with the experimental results.

2. Experimental Analysis

In CIGRE Technical Brochure (TB) 623 (CIGRE, 2015), the 
mechanical properties of subsea power cables are defined in terms of 
torsion, tension, bending, compression, impact, fatigue, penetration, 
friction coefficient, etc. In addition, the experimental methods for 
analyzing each property are described in detail. In this study, a uniaxial 
tensile test was performed to analyze the mechanical properties of 
subsea power cables subjected to tensile loading (axial stiffness), with 
reference to CIGRE TB 623. Subsea power cables (e.g., umbilicals, 
wire ropes, and mooring ropes) are slender bodies that are affected 
substantially by tensile loading in the longitudinal direction. To 
experimentally analyze the slender body specimen, the testing system 
described below was designed and fabricated to continuously 
withstand large loadings and to have a large stroke range of the 
crosshead to secure the length of the specimen and conveniently mount 
the specimen on the testing system. The hydraulic testing system for 
subsea power cables used in this experimental study has the following 
specifications: a maximum load of 10 MN, permissible specimen 
length of 4–13 m, maximum displacement of 700 mm, and maximum 
speed of 600 mm/min. Fig. 2 presents a schematic diagram of the 
hydraulic testing system used in the experimental analysis. 

A three-core AC inter-array subsea power cable was used in the 
experiment. Three-core AC inter-array subsea power cables are used 
for transmitting the power generated by offshore wind turbines to the 
offshore platform. In terms of axial stiffness tests, subsea power cables 
have two boundary conditions: fixed end–fixed end and fixed end–free 
end. In this experiment, only uniaxial tensile load was applied to the 
subsea power-cable specimen without rotation of the cross-section 
considering the fixed boundary conditions at both ends. An armor pot 
jig was specially designed and fabricated for modeling the complete 
fixed end condition at both ends of the cable. The armor pot jig was 
used for reproducing complete fixation by pouring silicone after 
connecting the fabricated metal frame to the end of the cable. The 
armor pot jig was connected to the hydraulic testing system at both 
ends. One end was connected to a hydraulic actuator to enable load 
control (See Fig. 3). The load and displacement data of the specimen 

　

Fig. 2 Schematic diagram of hydraulic testing system
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Fig. 3 Uniaxial tensile test of subsea power cables

Fig. 4 Experimental results: Load–displacement curves

Table 1 Experimental results: Axial stiffness

No. 1st loading 2nd loading 3rd loading
Axial Stiffness (MN) 251 267 266

were measured as functions of time and stored in the hydraulic 
actuator.

The length of the specimen was 6.5 m. An initial longitudinal 
displacement of 0.5 mm (a load of approximately 20 kN) was applied 
before the test to minimize the deflection caused by the self-weight. 
Three tests were performed on the same specimen. Fig. 4 presents the 
load–displacement curve of the specimen. As is evident from the 
figure, the subsea power-cable specimen shows a linear load–
displacement curve in the three tests conducted. Table 1 outlines the 
axial stiffness values of the subsea power cables. The lowest axial 
stiffness value was obtained in the first test. This was because of the 
presence of significantly small gaps between each component layer 
during the fabrication of subsea power cables (Witz and Tan, 1992). 
The gap was minimized or removed after the first uniaxial tensile test. 
Consequently, the axial stiffness measured from the second and third 
loadings were constant.

3. Theoretical Analysis

In this study, the theoretical models for predicting the mechanical 
properties of subsea power cables proposed by Witz and Tan (1992) 

were used. The equations are presented by dividing between 
cylindrical elements and helical elements. Consequently, these have 
advantage in terms of application to subsea power cables and to 
umbilicals and flexible pipes, which are hierarchical structures 
composed of cylindrical and helical elements. In addition, variations in 
the thickness and radius of each layer can be predicted because the 
interactions between component layers can be considered.

3.1 Theoretical Analysis of a Cylindrical Element
First, the equations for cylindrical elements proposed by Witz and 

Tan (1992) are based on the assumption of homogeneous materials. 
Fig. 5 shows the stress components of the cylindrical element.

Fig. 5 Cylindrical element stresses

The torsional load  ; pressures on the inner and outer surfaces, 
respectively ( , ); and the stress components within the element 
when the cylindrical element is subjected to a constant axial load  are 
expressed as follows:




 (1)

 

 
 (2)

 

 (3)

 = thickness of the element            = axial stress
 = radius of the cylinder                 = circumferential stress
 = shear stress

Assuming that uniform deformation occurs across the cylindrical 
element under a constant load, the strain components are expressed as 
follows:

 

∆ (4)




∆ (5)




∆ (6)
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   (7)

  = strain in the longitudinal direction    
  = strain in the circumferential direction
  = strain in the radial direction       
 = shear strain in the plane of the element
 = length of the cylinder            
 = longitudinal deformation of the cylinder
 = constriction of the cylinder     
 = variation in the thickness of the cylinder
 = twisting angle per unit length

In the equation for a cylindrical element, it is assumed that a 
constant out-of-plane stress is present owing to the pressures on the 
inner and outer surfaces. That is, the radial stress r can be expressed 
as Eq. (8):


 





 (8)

Assuming that an isotropic material is applied, the stress–strain 
relationship in the elastic domain is as follows:

  


    (9)


 







 (10)


 







 (11)

  


 (12)

= Young’s modulus             = Poisson’s ratio
= Shear modulus

The stress components of the cylindrical element are derived as 
follows from Eqs. (9)–(12):




 














 (13)




 














 (14)

 

 


 


  




 (15)

  (16)

A relationship between the force acting within the cylindrical 
element and strain can be derived as follows by substituting Eqs. (1)–
(8) into Eqs. (13)–(16):

 

 


 




∆


∆




 (17)

  

 





∆



 

∆




 (18)

 




 





∆







∆




 (19)

 
 ϕ (20)

3.2 Theoretical Analysis of Helical Elements
A distinct structural characteristic of subsea power cables is the 

presence of component layers of the helical elements. In the case of 
three-core cables, the core composed of the conductor of the subsea 
power cable, insulation material protecting the conductor, lead sheath, 
sheath, yarn, and armor wires have helical structures. The initial 
bending curvature and torsion of the helical elements according to the 
radius and pitch angle of the helical element layer are as follows:

   (21)


′ 

cos  (22)




sin cos (23)

  = initial bending curvature in the normal direction

′  = initial bending curvature in the binormal direction

  = initial twisting in the axial direction
 = initial helical radius of the strip
 = initial helical angle of the strip

Eqs. (24)–(26) show the final bending curvature of the helical 
elements when deformation occurs in the pitch angle of the helical 
component layer and helical elements owing to an arbitrary external 
force:


  (24)


′ ∆

cos  (25)


∆

sin
cos (26)

  = final bending curvature in the normal direction

′  = final bending curvature in the binormal direction

  = final twisting in the axial direction
∆ = constriction in helical radius
  = final helical angle of the strip

In the theoretical analysis of helical elements, the equation of elastic 
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equilibrium presented by Love (2013) can be expressed as follows if 
the external force, shear force, and moment applied to the helical 
elements are assumed to be constant:

 ′


′    (27)

 ′


′  ′  (28)

 ′ = shear force in the binormal direction
 ′ = bending moment in the binormal direction
 = axial force
 = distributed lateral force in the negative normal direction
 = torsional force

If the helical elements undergo deformation in the elastic domain, 
the bending moment and torsional load are proportional to the bending 
curvature and the variation in twisting, respectively:

 ′ 

′ 

′  (29)

  


 (30)

  = binormal bending stiffness of the strip
 = torsional stiffness of the strip

The strain in the axial direction of the helical elements is expressed 
as Eq. (31):




 (31)

  = axial strain of the strip
 = axial tensile stiffness of the strip

According to the geometric relationship between the initial helical 
element and the helical elements after deformation,   can be derived 
as a function of   as follows:


sin

sin


 (32)

  = helical angle of the stressed strip

Considering the geometric relationship again,   can be expressed as 
a function of ∆,  , and ϕ:


 arctan





tan







∆


ϕ
 







 (33)

 = initial pitch length of the helical strip

The stress distribution in the normal direction of the helical element 
can be expressed in terms of the difference between the external and 
internal surface pressures: 


 . Here,  is the effective 

width of the helical element. From Eqs. (27) and (28), the pressure 
difference between the outer and inner surfaces of the helical element 
is rearranged and derived as Eq. (34):


∈  


 ′


′ 


′  (34)

The axial load generated in the entire layer of a helical element is 
equal to the sum of the axial loads of each helical element. Eq. (35) 
illustrates the axial load generated when n elements are present in the 
helical element layer.

  
′ cos

 (35)

3.3 Theoretical Analysis of Structural Characteristics of Subsea 
Power Cables Based on Composite Hierarchical Integration

In this section, we describe the method for theoretically analyzing a 
composite hierarchical structure considering the interaction of each 
layer when the cylindrical and helical layers are integrated in an 
arbitrary sequence. First, it is assumed that in the composite 
hierarchical structure, the respective cylindrical and helical layers have 
equal longitudinal strain ( ) and twisting angle (ϕ) per unit length. 
The respective layers constituting the composite hierarchical structure 
interact with each other while undergoing different variations in radius 
or thickness under the action of an arbitrary external force. 
Furthermore, a governing equation is required to derive the 
expressions for the interactions of the respective layers. If a subsea 
power cable has m cylindrical layers out of the total n layers, we obtain 
the parameters of n variations in radius (∆ ) and variations in 
thickness for m elements (∆ ). In conclusion, the theoretical model 
of Witz and Tan (1992) uses a nonlinear governing equation with ∆ 
as a single parameter. The process of deriving this governing equation 
is as follows: 

The equation of equilibrium of the cylindrical element (Eq. (18)) 
and equation of equilibrium of the helical element (Eq. (34)) are 
expressed by the functions  ′ and  , respectively. The subscript of 
the outer and inner surface pressure  indicates the number of the layer 
composing the subsea power cables. The number increases in the 
direction from the innermost layer to the outermost layer.




 
∆

 ⋯⋯⋯ (36)

 ′   ′   ′∆ ′ ∆ ′ ⋯⋯⋯th

 ′   ′   ′ ∆ ′∆ ′ ⋯⋯⋯th

      ∆  ⋯⋯⋯th

  = internal pressure
  = external pressure
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In addition, the subscripts c and h denote cylindrical elements and 
helical elements, respectively. The cylindrical elements are identified 
by using a prime symbol in a subscript. The contact pressure  ⋯    
in Eq. (36) is offset by adding all the equations of equilibrium. This 
yields the following:

     ′ 
  

∆   ′ ∆ ′∆ ′  (37)

  ′ 
   

∆  ′ ∆′∆′    
   ′ 

∆

If the longitudinal deformation ∆ of the structure and the twisting 
angle ϕ are known, the function   has a single parameter (∆), 
and the function  ′ has two parameters (∆ ′ and ∆ ′). As is 
evident from Eq. (37), the thickness of the cylindrical element in the 
structure reduces, whereas that of the helical element does not. Owing 
to the interaction between adjacent helical element layers, the same 
variation in radius occurs (∆  

∆ ). Furthermore, the variation 
in thickness of the cylindrical element is equal to the difference in 
radius variation between the adjacent helical element layers 
(∆ ′ ∆  

∆ ′). Therefore, Eq. (37) can be expressed as a 
function of radius variation, ∆ .

  
  ′ 

  
∆  ′ ∆∆ ′  (38)

  ′ 
   

∆∆ ′   ′ ∆ ∆′ ∆′ 

  
   ′ 

∆ ∆ ′∆′    ′ ∆∆ ′∆′ 

Here, we need to express the function  ′ in terms of a single 
parameter (∆ ). To achieve this, ∆t needs to be expressed as a 
function of ∆ . From Eqs. (18) and (19), the internal contact 
pressure of the cylindrical element can be obtained as follows:

 ′ 
  ′ ′


 ′ ′


 ′ (39)

 ′ 

 

 
′ 

 




 
 ′ 

 

 

In addition, if the value of the initial internal pressure is known, 
from Eq. (36),  ′   can be expressed as a combination of hierarchical 
helical elements as shown in Eq. (40):

 ′ 
 

′
  


∆

 (40)

The following is derived by substituting Eq. (39) into Eq. (40):

∆ ′ 



′

  


∆


 ′ ′


 ′




 ′
 ′ (41)

Eq. (38) (the governing equation) can be rearranged as follows:


 (42)

      ′∆
∆ ′

∆ ′
 ′

  


The Newton–Raphson method was applied to solve the governing 
equation    as described above.

3.4 Three-core AC Subsea Power Cable
The cross-section of subsea power cables can be divided into two 

parts in terms of mechanical strength: (1) the part that combines the 
conductor constituting the center of the cable, insulation wrapping the 
conductor, lead sheath, sheath, and shaped filler used to maintain the 
original shape of the cable, and (2) the layer of armor wires to increase 
the mechanical strength of the subsea power cables. Here, the 
mechanical strength of the centrally located insulation, lead sheath, 
sheath, and shaped filler may be considered negligible. This is because 
these have a significantly low elastic modulus or cross-sectional area 
ratio compared with the conductor and armor wires. Consequently, the 
cable is more affected by the deformation caused by the friction force 
between adjacent layers than the deformation caused by an external 
force acting on the subsea power cable. Therefore, in the theoretical 
analysis of this study, it was assumed that the mechanical strength of 
insulation, lead sheath, sheath, and shaped filler layers with low elastic 
moduli may be omitted. Rather, a simplified core combining the 
conductor, insulation, lead sheath, and sheath was assumed and 
applied to the theoretical analysis (See Fig. 6). The values of the 
physical properties of yarn and armor wires required for theoretical 
analysis were obtained from Tjahjanto et al. (2017). In addition, the 
average elastic modulus of 36,500 MPa and Poisson's ratio of 0.4 were 
applied for the simplified core considering the elastic modulus of each 
layer and ratio of the cross-sectional area.

Accordingly, the subsea power cables used in the theoretical 
analysis were simplified to a composite hierarchical structure with 
four layers of helical elements (simplified core, first yarn, armor wires, 

Fig. 6 Cross-section of subsea power cable (left) and the simplified 
cross-section for theoretical analysis (right)
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Table 2 Parameters applied to theoretical analysis

Parameter Value Parameter Value
 6.5 m   (Simplified core) 34 mm

∆ 4 mm   (1st Yarn) 62.6 mm

 0 radian   (Armor wires) 66.1 mm
  (Simplified core) 0.14 radian   (2nd Yarn) 70.7 mm
  (1st Yarn) 1.05 radian  0 N
  (Armor wires) 0.23 radian  0 N
  (2nd Yarn) 1.05 radian

Fig. 7 Theoretical result: Load–displacement curve and comparison 
with experimental results

and second yarn). Because all the components were helical elements, 
the thickness variation of each layer is not considered in the analysis. 
The thicknesses of the simplified core (1 core), first yarn, armor wires, 
and second yarn were 55, 2.2, 4.8, and 4.4 mm, respectively.

The values of the parameters required for the theoretical analysis are 
summarized in Table 2. In subsea power cables, there is no internal 
pressure as in the case of umbilicals or pipelines. Thus, the internal 
pressure () is 0 N. The external pressure () was also considered 
as 0 N because no external pressure was applied to the cable in the 
experiment.

Fig. 7 shows the load–displacement curve predicted by the 
theoretical analysis. Although the governing equation Eq. (42) is a 
non-linear function, the load–displacement (longitudinal deformation) 
curve is linear. The axial stiffness calculated from the theoretical 
analysis is 286 MN. The radius variation ∆ is 0.07 mm, which is 
insignificant (= 0.1% of the initial radius (approximately 75 mm)).

4. Discussion and Conclusion

In this study, experimental and theoretical analyses were performed 
to evaluate the axial stiffness of three-core AC subsea power cables. 
For the experimental analysis, a 6.5 m inter-array subsea power cable 

specimen was fabricated to perform uniaxial tensile test. In addition, 
the axial stiffness of the specimen was predicted using the theoretical 
model presented by Witz and Tan (1992). Furthermore, the predicted 
results were compared with the experimental results. The theoretical 
model of Witz and Tan (1992) predicted higher axial stiffness (error 
rate of approximately 6.6%) compared with the experimental results. 
The following are considered to be the causes of the error between the 
experimental and theoretical analysis results. First, because the model 
does not consider the interaction between elements in each layer as in 
the theoretical assumptions, it does not consider the resistance 
generated by interference or friction between elements. Second, the 
theoretical model does not consider the plastic deformation of 
materials that may occur in the manufacturing process of subsea power 
cables. That is, the mechanical strength of the helical elements may be 
overestimated because it is assumed that the helical element layer does 
not have a normal-direction curvature during production. In 
manufacturing, plastic deformation of the material may occur when 
the pitch angle of the helical elements is excessive or the radius of the 
helical element layer is significantly small. This, in turn, reduces the 
mechanical strength of the entire cable. Third, errors may be caused by 
oversimplification of the material properties (modulus of elasticity) 
and mechanical properties (bending stiffness, torsional stiffness) of the 
central part of the subsea power cable, i.e., a three-core structure. 
Nevertheless, the theoretical model used in this study is convenient to 
apply and has a significantly high computation speed compared with 
numerical analysis based on FEM. Therefore, it is considered an 
efficient method for predicting the mechanical behavior of subsea 
power cables. However, further testing and validation by comparing 
the results of the FEM-based numerical analysis are required for 
quantitatively verifying the feasibility and effectiveness of the method.

Although the uniaxial tensile test in this study was performed under 
fixed boundary conditions at both ends, the real-world subsea power 
cables are exposed to fixed-end-free end boundary conditions in the 
process of manufacturing, shipping, transshipment, burial, and 
installation. It is known that the axial stiffness of subsea power cables 
decreases under the fixed end-free end boundary condition. In 
addition, a more in-depth analysis of the stress distribution within each 
component and the initial deformation occurring during manufacturing 
of the cable is required. To achieve this, it is necessary to further 
analyze the axial stiffness according to the boundary conditions and 
the stress distribution within the components, and to modify the 
theoretical models to reduce the above-mentioned errors.
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