• Title/Summary/Keyword: measure of an angle

Search Result 483, Processing Time 0.025 seconds

Manipulability Analysis of a New Parallel Rolling Mill Based upon Two Stewart Platforms (두 개의 스튜어트 플랫폼을 이용한 병렬형 신 압연기의 조작성 해석)

  • 이준호;홍금식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.925-936
    • /
    • 2003
  • The manipulability analysis of the parallel-type rolling mill proposed in Hong et al. [1] is re-visited. The parallel rolling mill uses two Stewart platforms in opposite direction for the generation of 6 degree-of-freedom motions of each roll. The objective of this new parallel rolling mill is to permit an integrated control of the strip thickness, strip shape, pair crossing angle, uniform wear of rolls, and tension of the strip. New forward/inverse kinematics problems, in contrast with [1], are formulated. The forward kinematics problem is defined as the problem of finding the roll-gap and the pair-crossing angle of two work rolls for given lengths of twelve legs. On the other hand, the inverse kinematics problem is defined as the problem of finding the lengths of twelve legs when the roll-gap, the pair-crossing angle, and the position and orientation of one work roll are given. The method of manipulability analysis used in this paper follows the spirit of [1]. But, because the rolling force and moment exerted from both upper and lower rolls have been included in the manipulability analysis, more accurate results than the use of a single platform can be achieved. Two. kinematic parameters, the radius of the base and the angle between two neighboring joints, are optimally designed by maximizing the global manipulability measure in the entire workspace.

Compensation of Relation Formula between Luffing Wire Tension and Overturning Moment in a Crawler Crane Considering the Deflection of Boom (크롤러 크레인에서 붐의 처짐을 고려한 러핑와이어 장력과 전도모멘트 사이의 관계식 보정)

  • Jang, Hyo-Pil;Han, Dong-Seop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.44-49
    • /
    • 2011
  • The crawler crane, which consists of a lattice boom, a driving system, and movable vehicle, is widely used in a construction site. It needs to be installed an overload limiter to prevent the overturning accident and the fracture of structure. This research is undertaken to provide the relation formula for designing the overload limiter as follows: First the relation formulas between the wire-rope tension and the hoisting load or the overturning ratio according to the luffing angle and length of a lattice boom are established. Secondly the derived formulas are corrected by using the compensated angle considering the deflection of boom through the finite element analysis. The stiffness analysis is carried out for 30-kinds of models as a combination of 6-kinds of luffing angle and 5-kinds of length of boom. Finally the shape design of a stick type load cell, which is the device to measure the wire-rope tension, is performed. 5-kinds of notch radius and 5-kinds of center hole radius are adopted as the design parameter for the strength analysis of the load cell.

Measurement of a Six-degree-of-freedom Dynamic Characteristics using Angle Sensor-Implemented Grating Interferometry (회절격자 간섭계를 이용한 초정밀 스테이지의 6 자유도 운동 특성 측정)

  • Lee, Cha-Bum;Kim, Gyu-Ha;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.906-912
    • /
    • 2012
  • This paper presents the new method for a six-degree-of-freedom (DOF) motion measurement and those dynamic characterizations in an ultraprecision linear stage using angle sensor-implemented grating interferometry. It consists of a diffractive optical element, a corner cube, four separate two-dimensional position sensitive detectors, four photodiodes and auxiliary optics components. From the previous study, it was confirmed that the proposed optical system could measure a six-DOF motion error in a linear stage. In this article, six-DOF motion dynamic characteristics of the stage were investigated through the step response and with respect to the conditions with a different speed of a slide table. As a result, the natural frequency and damping ratio according to a six-DOF direction was obtained. Also, it was seen that the speed of slide table had an significant effect on a six-DOF displacement motion, especially, X, which was considered as the effect of friction mechanism and local elastic mechanical deformation in a slide guide.

Development of a Camera-based Position Measurement System for the RTGC with Environment Conditions (실외 주행환경을 고려한 카메라 기반의 RTGC 위치계측시스템 개발)

  • Kawai, Hideki;Kim, Young-Bok;Choi, Yong-Woon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.892-896
    • /
    • 2011
  • This paper describes a camera-based position measurement system for automatic tracking control of a rubber Tired Gantry Crane (RTGC). An automatic tracking control of RTGC depends on the ability to measure its displacement and angle from a guide line that the RTGC has to follow. The measurement system proposed in this paper is composed of a camera and a PC that are mounted on the right upper between front and rear tires of the RTGC's side. The measurement accuracy of the system is affected by disturbances such as cracks and stains of the guide line, shadows, and halation from the light fluctuation. To overcome the disturbances, both side edges of the guide line are detected as two straight lines from an input image taken by the camera, and parameters of the straight lines are determined by using Hough transform. The displacement and angle of the RTGC from the guide line can be obtained from these parameters with the robustness against the disturbances. From the experiments with the disturbances, we found the accurate displacement and the angle from the guide line that have the standard deviations of 0.95 pixels and 0.22 degrees, respectively.

Effect on Axial Rake Angle of Cutting Edge for Machinable Ceramics (절삭 선단의 축 방향 경사각이 가공성 세라믹에 미치는 영향)

  • Jang, Sung-Min;Yun, Yeo-Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.7-12
    • /
    • 2009
  • The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Thus, traditional ceramics are very difficult-to-cut materials. Generally, ceramics are machined using conventional method such as grinding and polishing. However these processes are generally costly and have low MRR(material removal rate). To overcome such problems, in this paper, h-BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 10 and 15%. The purpose of this study is an analysis of endmill's rake angle for appropriate tools design and manufacturing for the machinable ceramics. In this study, Experimental works are executed to measure cutting force, surface roughness, tool fracture, on different axial rake angle of endmills. Cutting parameters, namely, feed, cutting speed and depth of cut are used to accomplish purpose of this paper. Required experiments are performed, and the results are investigated.

Analysis of Low-leg Activation and Movement of Soccer Players during Kicking Action by Applying Kinesiotaping (축구선수의 킥 동작시 키네시오 테이핑 적용에 따른 하지근활성화 및 동작분석)

  • Kim, Yong-Jae;Mo, An-Na
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.131-143
    • /
    • 2007
  • In this study, we are concluded like this : 5 men who are soccer player of P university in B city measure the Electromyography with an angle of motion according to kinesiotaping's application when practicing in-step kick. When exercising in-step kick, the change of realization of muscle load of lower limbs enhence Gastrocnemius Lateralis and Vastus Medialis in the section of backswing, and improve Tibialis Anterior, Vastus Medialis, Rectus Femoris prior to impact after back-swing. Before impact, it mainly impoved Tibialis Anterior, Vastus Medialis, Rectus Femoris. After impact, it generally improved Gastrocnemius Lateralis, Vastus Medialis. Average integral electromyography value, it was such a small difference(; the difference of the value in Tibialis Anterior, Rectus Femoris, Vastus Medialis) that we can't compare case of after taping than before. In Electromyography, in case of after taping was considerably decreased at Gastrocnemius Lateralis, there was statistically significant difference between before and after. It was a little increased, after taping than before at Knee angle. And degree was a little decreased at Ankle angle. But, It's so delicate difference, there was not statistically significant difference between before and after.

Development of a 2D Posture Measurement System to Evaluate Musculoskeletal Workload (근골격계 부하 평가를 위한 2차원 자세 측정 시스템 개발)

  • Park, Sung-Joon;Park, Jae-Kyu;Choe, Jae-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.43-52
    • /
    • 2005
  • A two-dimensional posture measurement system was developed to evaluate the risks of work-related musculoskeletal disorders(MSDs) easily on various conditions of work. The posture measurement system is an essential tool to analyze the workload for preventing work-related musculoskeletal disorders. Although several posture measurement systems have been developed for workload assessment, some restrictions in industry still exist because of its difficulty on measuring work postures. In this study, an image recognition algorithm was developed based on a neural network method to measure work posture. Each joint angle of human body was automatically measured from the recognized images through the algorithm, and the measurement system makes it possible to evaluate the risks of work-related musculoskeletal disorders easily on various working conditions. The validation test on upper body postures was carried out to examine the accuracy of the measured joint angle data from the system, and the results showed good measuring performance for each joint angle. The differences between the joint angles measured directly and the angles measured by posture measurement software were not statistically significant. It is expected that the result help to properly estimate physical workload and can be used as a postural analysis system to evaluate the risk of work-related musculoskeletal disorders in industry.

A Study on the Heat Transfer Performance Using Various Grooved Heat Transfer Tubes (다양한 전열관 내부 홈 변화에 의한 열전달 성능에 관한 연구)

  • Han, K.I.;Chung, W.K.;Ye, S.S.;Park, S.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Single-phase heat transfer performance and pressure drop for internally grooved tubes with angles were studied. Experiments were carried out in a counter flow heat exchanger with water as a working fluid. Two commercially available internally grooved tubes and smooth tube were tested. The internal diameter of the smooth tube was 16.5mm and the internal diameters of grooved tubes were 15.4mm, 14.9mm, 15.0mm, 16.7mm, respectively. Grooved angles in the tubes were $37^{\circ},\;43^{\circ},\;45^{\circ},\;50^{\circ}$, respectively. An experimental device to measure the friction factor and heat transfer coefficient was constructed. The experimental results were obtained for the fully developed turbulent flow of water in tube on the condition of uniform heat flux. As the increase of flow rate, Reynolds number, numbers of groove and grooved angle led to the increase of pressure drop. Also this paper showed that heat transfer rate increased with increasing numbers of groove and grooved angle. An empirical relation taken from this study represented most of the data within ${\pm}25%$.

  • PDF

Comparison of Lumbopelvic Motions During Hip Medial Rotation Depending on Sex Differences and Chronic Lower Back Pain

  • Kim, ChiHwan;Han, JinTae
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.2
    • /
    • pp.117-121
    • /
    • 2019
  • Purpose: Hip rotation testing is important in the evaluation of chronic back pain. The purpose of this study was to investigate hip and lumbopelvic movement during hip medial rotation (HMR) in individuals with chronic lower back pain (CLBP). Methods: This study targeted 112 subjects in total: 28 healthy males and 28 healthy females, and 27 males with CLBP and 29 females with CLBP. Motion-capture device was used to measure the hip medial rotation angle (HMRA), lumbopelvic rotation angle (LPRA), and the rotation angle of the hip when lumbopelvic rotation starts during hip medial rotation. Results: When evaluating the healthy males and females using the hip medial rotation test (HMRT), healthy males showed a smaller HMRA than did healthy females (p<0.05). When evaluating the healthy males and the males with CLBP using the HMRT, males with CLBP showed a smaller HMRA and more lumbopelvic movements than did healthy males (p<0.05) in addition, their lumbopelvic movements occurred earlier during HMR (p<0.05). Finally, when evaluating the males and the females with CLBP using the HMRT, males with CLBP showed a smaller HMRA and more lumbopelvic movements (p<0.05), and their lumbopelvic movements occurred earlier during HMR (p<0.05). Conclusion: The HMRT is an important test for the evaluation of males, and especially males with CLBP, as they often experience an increased LPRA and decreased HMRA, with lumbopelvic movement occurring earlier during HMR when compared to other groups.

Development of Measurement System for Contact Angle and Evaporation Characteristics of a Micro-droplet on a Substrate (미소 액적의 접촉각 및 건조 특성 측정 시스템 개발)

  • Kwon, Kye-Si;An, Seung-Hyun;Jang, Min Hyuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.414-420
    • /
    • 2013
  • We developed inkjet based measurement system for micro-droplet behavior on a substrate. By using the inkjet dispenser, a droplet, which is as small as few pico-liter in volume, can be jetted and the amount can be controlled. After jetting, the droplet image on the substrate is acquired from side view camera. Then, droplet profile is extracted to measure droplet volume, contact angle and evaporation characteristics. Also top view image of the droplet is acquired for better understanding of droplet shape. The previous contact angle measurement method has limitations since it mainly measures the ratio of height and contact diameter of droplet on a substrate. Unlike previous measurement system, our proposed method has advantages because various behavior of droplet on substrate can be effectively analyzed by extracting the droplet profile.